SIFTING AND WINNOWING:
APPROACHES TO FINDING USEFUL
INFORMATION ON THE WEB

By

Matthew Zeidenberg

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DocToRr oF PHILOSOPHY

(COMPUTER SCIENCES)

at the
UNIVERSITY OF WISCONSIN - MADISON

2003



U Copyright by Matthew Zeidenberg 2003

All Rights Reserved



Contents

Abstract XVi
Acknowledgments xviii
1 Introduction 1
1.1 Information Filtering . . . . . . . .. . ... ... .. 1

1.2 Web User Modeling: Interests, Agents, and
Feedback . . . . . . . . . .o 10
1.3 Overview of the Thesis . . . . . . .. .. ... ... ... ..., 13
2 Background 18
2.1 Web Topology and Growth . . . .. ... .. ... .. .. ...... 19
2.2 The Web and the Real World . . . . . .. ... ... ... ...... 22
2.3 WordNet . . . . . . e 24
2.4 The Clever Project: Hubs and Authorities . . . . ... ... ... .. 30
2.5 Page Ranking Techniques . . . . .. ... ... ... ... ...... 33
2.6 Spreading Activation . . . . .. ... oL L o 35
2.7 The Term-Vector Model of Document Similarity . . . . ... ... .. 38



2.8 Concept Similarity . . . . . .. ... o oo

2.9 Document Clustering . . . . . . .. . ...

291
2.9.2
2.9.3

294

Suffix Tree Phrase Clustering . . . .. .. ... ... ... ..
Neural Network Methods for Text Clustering . .. ... ...
The Multiple Cause Mixture Model for Document

Clustering . . . . . . . . . . o e

Concept Indexing . . . . . . . ... Lo

2.10 Document Classification . . . . . . . . . . . . ..

Using Links to Improve Classification

3.1 Classifying Wisconsin Policy Documents Using Link Structure . . . .

3.2

3.3

3.1.1
3.1.2
3.1.3
3.14

Hypothesis. . . . . . . . . .. .. oL

Extending Naive Bayes to Use Hyper-link

Information . . . . . .. ..o o
3.3.1 Hypothesis. . . . . . ... o
3.3.2 Methods . . . . . ...
333 Results. . . ... oo
3.3.4 Discussion . . . . ...

3.4 Review of the Contributions of this Chapter . . . . . ... ... ...

i

39
41
42
46

20
92
o4



il

4 Merging Search Engines and Directories 83

4.1

4.2

4.3

Global versus Local Spidering and Ranking: A Different Way to Look

at Search Engines . . . . . . . . .o o oo 90
4.1.1 Design of the “Active Portal” Project . . . . . ... ... ... 90
4.1.2 An Informal Evaluation of Active Portal . . . ... ... ... 95
4.1.3 An Informal Comparison of Active Portal to Google . . . . . . 97
4.1.4 Discussion: Page Ranking and Disambiguation . . . . . . . .. 98

Using a Tree of Classified Pages to Find More Relevant Pages and

Classify Them . . . . . . .. ... .o o oo 100
4.2.1 Hypothesis. . . . . . . ..o o Lo 100
4.2.2 Method . . ... . .. ... 101
4.2.3 Results and Discussion . . . . . .. ... ... 108

4.2.4 Summary of the Performance of Multi-Resolution Naive Bayes 113
Extending Pre-Classified Sets by Using their

Centroids and Reverse-Keyword Search Engines . . . . . .. ... .. 115
4.3.1 Hypothesis. . . . . . ... o 115
4.3.2 Method . .. ... ... 115
4.3.3 Results of TFIDF Centroid Computation: Physics . . . . . . . 117
4.3.4 Results of TFIDF Centroid Computation: Chemistry . . . . . 119

4.3.5 Results of Classifying Search Engine Output with Naive Bayes 121

4.3.6 Hypothesis. . . . . . . . . .. Lo 124
4.3.7 Method . . ... ... 125
4.3.8 Results of TFIGF Centroid Computation: Physics . . . . . . . 125

4.3.9 Results of TFIGF Centroid Computation: Chemistry . . . . . 128



4.3.10 Hypothesis. . . . . . . . . ... Lo

4.3.11 Method . . . . . . . . . . .

4.3.12 Results . . . . . . . o

4.4 Review of the Contributions of this Chapter . . . . . ... ... ...

5 Using Feedback to Find Better Results

5.1 Models of Web Page Quality and Relevance . . . ... .. ... ...

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6

Hypothesis. . . . . . . . . . . . .. .. ... ... ..
Method . . . . . . . . .
Keyword Models . . . . . .. .. ... oL
Results of Keyword Models and Discussion . . . . . . ... ..
Results of Models Based on Length and Content . . . . . . . .

In-link Model Contruction, Results, and Discussion . . . . . .

5.2 Review of the Contributions of this Chapter . . . . .. .. ... ...

6 Clustering Web Pages

6.1

Connected Components and Web Navigation . . .. ... ... ...

6.1.1

6.1.2
6.1.3

6.1.4

Finding Highly-Referenced Pages and Examining a Zipf’s Law

Hierarchies of Pages and Connected Components . . . . . . .
Computing Connected Components: An Experiment with a
“Jaguar” Query . . ...l
Semantic Disambiguation of Three Ambiguous Sets of Query

Results: A Detailed Look . . . . . . . . .. .. ... .. ...

v

129
129
129
134

137
137
138
138
141
142
145
146
152

154



6.2

6.3

6.1.5 Finding the Most Salient Pages within Connected

Components using In-Link Counts . . . . . . . ... ... ... 185
6.1.6 Looking at the New Search Engines: Teoma and Wisenut . . . 188
6.1.7 Directions for Further Research . . . . .. ... .. ... ... 191
Using WordNet to Disambiguate Results . . . . . ... ... ... .. 193
6.2.1 Hypothesis. . . . . . . . ... oL 194
6.2.2 Method . .. ... .. .. ... 195
6.2.3 Results on the Ambiguous Query “Speaker” . . . ... .. .. 196
6.2.4 Results on the Ambiguous Query “Bear” . . . . ... ... .. 199
6.2.5 Discussion . . . . . ... Lo o 204
6.2.6 The Use of Two-Word Combinations Involving “Bear” . . . . . 205
Using Semantic Networks for Clustering . . . .. .. ... ... ... 207
6.3.1 A HAL Matrix for “Jaguar” . . ... ... ... ... . .... 207
6.3.2 Finding Word Correlates for Use in Query Refinement . . . . 212
6.3.3 Top Correlates of Salient Words for “Jaguar” . . . . . . . . .. 212
6.3.4 A HAL Matrix for “Ford” . . . . . ... ... ... ... ... 213
6.3.5 Top Correlates of Salient Words for “Ford” . . . . .. ... .. 214
6.3.6 A HAL Matrix for “Lincoln” . . . . .. ... ... ... .... 219
6.3.7 Top Correlates of Salient Words for “Lincoln” . . . . . . . .. 224
6.3.8 HAL-Set-Partition: An Algorithm for Finding Sets of Semantically-

Related Words . . . . . . .. .. oL oo 224
6.3.9 Application of HAL-Set-Partition to the “Jaguar”

Keywords . . . . . . . . ... oL 226



7

vi

6.3.10 Application of HAL-Set-Partition to the “Ford”

Keywords . . . . . . . . . . 228
6.3.11 Application of HAL-Set-Partition to “Lincoln” . . . . . . . .. 229
6.3.12 HAL-Disjoint-Supervised: A User-Supervised Approach to Cre-

ating Lists of Words for Use in Query Refinement . . . . . . . 229
6.3.13 Application of HAL-Disjoint-Supervised to the “Jaguar” Key-

wWords .. .. e e e 231

6.3.14 Application of HAL-Disjoint-Supervised to the “Ford” Keywords 234

6.3.15 Application of HAL-Disjoint-Supervised to “Lincoln” . . . . . 236
6.4 Review of the Contributions of this Chapter . . . .. ... ... ... 238
Emerging Forms of Collaboration and Filtering 239
7.1 Introduction . . . . . . . . . L 239
7.2 Current Collaborative Systems . . . . . . . .. ... ... ... .... 240
7.3 A Model Collaborative System . . . . . . . .. .. ... ... ..... 247
7.4 Review of the Contributions of this Chapter . . . .. ... ... ... 257
Conclusion: Break out of the Box 258
8.1 Thesis Summary, Results, and Contributions . . . . . . .. ... ... 258
8.2 Directions for Further Research . . . . . . .. ... ... ... .... 266
8.3 From Many BoxestoOne . .. ... .. ... ... . ......... 271

8.4 Thinking Even More Broadly: Transforming
Society through Collaborative Information

Management and Creation . . . . . . . . .. ... ... ... ... 276



Bibliography

vii

281



List of Tables

3.1

3.2

3.3

3.4

4.1
4.2

4.3

4.4

Confusion Matrix for Classification of Wisconsin Public Policy Web

Confusion Matrix, Classification of Wisconsin Policy Documents, Per-
centages . . . . .. L. L e e e e
Mean Performance Across Ten Folds for Chemistry and Physics Data
Sets and Significance of Difference from Naive Bayes as Measured by
a Paired Two-Sided ¢ Test . . . . . . . . ... ... ... ...
Information Used Versus Techniques Employed for the Algorithms Dis-
cussed in this Section; Original Algorithms Shown in Bold Italics; Al-

gorithms from the Literature, in Ordinary Italics. . . . . . . . .. ..

Number of Pages in Each System for Two Topics . .. ... ... ..
Comparison of Active Portal to Google . . . . . . .. ... ... ...
Dmoz “/Science/Biology” Sub-Categories 1-50 of 174, with the Number
of Pages Pre-Classified in each Sub-Category . . ... ... ... ..
Dmoz “/Science/Biology” Sub-Categories 51-100 of 174, with the Num-

ber of Pages Pre-Classified in Each Sub-Category . . ... .. .. ..

viil

62

63

76

79

96
97

102



4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12
4.13

5.1

5.2

9.3

5.4

3.5

Dmoz “/Science/Biology” sub-categories 101-174 of 174, with the num-
ber of pages pre-classified in each sub-category . . . . . . . .. .. ..
Performance of Multi-Resolution (M) Naive Bayes and Exhaustive (X)
Naive Bayes on Four Sets of Pages . . . .. ... .. ... ......

Centroid of Word Stems Derived from Dmoz’s “/Science /Physics” Cat-

Word Stems in the Chemistry Centroid Derived from the Dmoz “/Sci-
ence/Chemistry” Category . . . . . . . . . . . .. ... ... ..
Naive Bayes Performance in Discriminating between Chemistry and
Physics on Dmoz Training and Test Sets and on Google Results

Centroid Computed from Dmoz Physics TFIGF Vectors. . . . . . . .
Centroid Computed from Dmoz Chemistry TFIGF Vectors . . . . . .
Combined Physics Centroid . . . ... ... ... ... ........

Combined Chemistry Centroid . . . . . ... ... ... ........

Descriptive Statistics, Relevance and Quality Judgments, Wisconsin
Policy Topics . . . . . . . . .
Top 100 Over-Represented Word Stems, Wisconsin Policy Areas (Econ-
omy, Education, and Environment) . . . . ... ... ... ... ...
Top 100 Over-Represented Word Stems, Wisconsin Policy Areas (Gov-
ernment/Politics and Health Care) . . . . ... ... ... ... ...
Linear and Log Models Relating Page In-Links to Subject’s Mean Judg-
ments of Quality and Relevance . . . . . . .. .. ... .. ...
In-Link Statistics for the Wisconsin Policy Pages, as Reported by Al-

tavista and Google . . . . . . ... Lo

X



6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Characteristics of Pages (URLs) Returned to Three Queries to Two In-

ternet Search Engines; Top 200 URLs Returned by Each Search Engine

Number of Direct Links Between Pages in Each Set for Three Queries
The Two Largest Connected Components in Size (Number of Pages)
Found in Each Set of Pages for Each of the Three Queries . . . . . .
The Two Largest Connected Components in Size (Number of Pages)
Found in Each Set of Pages for Each of the Three Queries, Using Direct
and Indirect Links . . . . . . ..o o o000
Set Size, Direct Internal Links, and Total Link Count for the “Ford,”
“Jaguar,” and “Lincoln” Sets of Pages . . . . . .. ... ... ... ..
Separation/Detection of Four Meanings for Each of Three Queries by
Teoma and Wisenut . . . . . . . ... .. .. oL
Confusion matrix for WordNet-based classification of three meanings
of the word “speaker” . . . . . . . ... ... .

Confusion matrix for Classification of two noun meanings of the word

One Dimension of the HAL-Style Matrix Relative to the Word “Jaguar”

(Words 1-50) . . . . o oo

6.10 One Dimension of the HAL-Style Matrix Relative to the Word “Jaguar”

(Words 51-100) . . . . . o oo i

6.11 One Dimension of the HAL-Style Matrix Relative to the Word “Jaguar”

(Words 101-150) . . . . . . oo o v

175
177

180

183

184

190

198

203

208

209



6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20
6.21

6.22

6.23

7.1

One Dimension of the HAL-Style Matrix Relative to the Word “Jaguar”
(Words 151-200) . . . . . o oo v it
One Dimension of the HAL-Style Matrix Relative to the Word “Ford”
(Words 1-50) . . . . . o o
One Dimension of the HAL-Style Matrix Relative to the Word “Ford”
(Words 51-100) . . . . . . . ..
One Dimension of the HAL-Style Matrix Relative to the Word “Ford”
(Words 101-150) . . . o o o oo o
One Dimension of the HAL-Style Matrix Relative to the Word “Ford”
(Words 151-200) . . . . . o oo v i e e
One Dimension of the HAL-Style Matrix Relative to the Word “Lin-
coln” (Words 1-50) . . . . . . . .. o
One Dimension of the HAL-Style Matrix Relative to the Word “Lin-
coln” (Words 51-100) . . . . . . . . o
One Dimension of the HAL-Style Matrix Relative to the Word “Lin-
coln” (Words 151-200) . . . . . . . . oot i i
HAL-Set-Partition Results for “Jaguar” . . . . .. ... .. ... ...
Reduction in Size of Keyword Sets for Various Meanings of “Jaguar”
after Making the Sets Disjoint . . . . . . . .. ... ... ... ...
Reduction in Size of Keyword Sets for Various Meanings of “Ford” after
Making them Disjoint . . . . . . . .. .. ..o 0oL
Reduction in Size of Keyword Sets for Various Meanings of “Lincoln”

after Making them Disjoint . . . . . . . ... ... ... ...

Documents and Authors for the 5-Individual Simulation. . . . . . . .

xi

220

221

223
227

233

236



7.2

7.3

7.4

xii

Rating Individuals, Documents Rated, and Rating Value for the 5-
Individual Simulation . . . .. . ... ... ... . ... .. ..., 255
Mean Individual Karma of the 5-Individual System after 1, 5 and 10
Iterations . . . . . . . . . . 255
Mean Document Rating for the 5-Individual system after 1, 5, and 10

Iterations . . . . . . . . . . 256



List of Figures

2.1

2.2

3.1

3.2

3.3
3.4

3.5
3.6

3.7
3.8
3.9

A Suffix Tree for the Phrases “Jack dropped the ball” and “Jack dropped
APENNY” . . L Lo e e

The Architecture of the Multiple Cause Mixture Model . . . . . . ..

Voting Algorithm for Classification of Pages by Direct and Indirect
Incoming and Outgoing Links . . . . . . ... .. ... ... ...
Counts of Linkages Between Categories in the Dmoz “/Science/Biology”
Subtree . . ...
The Naive Bayes (NB) Algorithm, as Applied to Text Classification

Algorithm NB-Text-And-Links: Integrates Textual and Link Informa-
tion to Classify Pages . . . . . . . . .. ... oL
Two-bag Version of Naive Bayes (NB-2bags) . . . . . . ... .....
Algorithm Simple-Link-Voting: Classifies Pages on Basis of Link In-
formation Only . . . . . . .. ..o
Algorithm Voting-Trumps-NB . . . . . . . .. .. ... .. .. ....
Algorithm Voting-NB-Combined . . . . . . . . .. . ... ... ....
Algorithm NB-with-Neighbors . . . . . . . . . .. ... .. .. ....

xiil

45
o1

60

66
68

70
71



4.1

4.2

4.3
4.4
4.5
4.6

4.7
4.8

6.1

6.2

6.3

6.4
6.5

Xiv

Algorithm Build-Tree-Tables . . . . . . . . . . .. ... .. .... 85

Two Processes for Growing a Category within a Tree that Classifies

Web Pages . . . . . . . . 86
Active Portal Page Ranking Procedure . . . . .. .. ... ... ... 94
Multi-Resolution Naive Bayes Algorithm . . . . . .. ... ... ... 105

Computing the Normalized TFIDF Centroid of a Set of Documents D 116
Discriminating between Two Topics using a Naive Bayes Classifier, and
Using this Classifier to Classify Search Engine Output using Top Words
from a TFIDF Centroid for Each Topic . . . . .. ... ... ... .. 123
Computing the Normalized TFIGF Centroid of a Set of Documents D 126
Combining TFIDF and TFIGF Results for a Set of Documents D . . 130

Log(Rank) Versus Log(In-Link) Frequency for the Top 1000 Pages in

Terms of In-Links within a Sample of 100,000 Pages Randomly Drawn

Log(Rank) Versus Log(In-Link) Frequency for the Top 1000 Pages in
Terms of In-Links within a Sample of 100,000 Pages Randomly Drawn
from Dmoz . . . . . . . 160
Log(Rank) Versus Log(In-Link) Frequency for the Top 1000 Pages in
Terms of In-Links within a Sample of One Million Pages, Half Ran-
domly Drawn from Dmoz and Half from Yahoo! . . . . ... ... .. 161
Part of the Web Visualized as a Hierarchy . . . .. .. .. ... ... 163

A Method of Computing the Connected Components of a Set of Web



6.6

6.7
6.8

6.9

6.10
6.11

6.12
6.13
6.14

7.1
7.2
7.3

8.1

Computing Connected Components of a Set of Web Pages W, Omitting
the Globally Most Highly-Referenced Pages . . . .. .. .. ... ..
A Hypothetical 5-Page Connected Component. . . . . . ... .. ..
Finding the Pages in Each Connected Component of a Set of Web
Pages W with the Highest Number of In-Links . . . . . . . .. .. ..
Disambiguation of Web Page Results on a Query for a Specific Word
X Using WordNet . . . . . .. .. .o o
A Portion of WordNet Around the Word “Bear,” for its Animal Sense
HAL-Set-Partition: An Algorithm for Finding Sets of Semantically-
Related Words . . . . . . . . . .o o o
A Hypothetical Graph Output of HAL-Set-Partition . . . . . . . ..
Algorithm HAL-Disjoint-Supervised . . . . . . . . . . ... ... ...

Hypothetical Output of HAL-Disjoint-Supervised . . . . . . .. ...

An Algorithm for a System of User and Document Ratings . . . . . .
Relaxation Algorithm for a System of User and Document Ratings . .
A Model System Consisting of 3 People and 6 Documents, 2 Documents

Per Person . . . . . . . . ...

Hypothetical Optimal Rankings of a Set of Ten Web Pages with Re-

spect to Two Topics. . . . . . . . . . . . .

XV

169
186

186

195
201

225
225
230
231

248
251

252



XVi

Abstract

The Web has started a social transformation in which information flows more
widely and could be made more reliable. But we need tools to make this flood of
information more useful.

I argue that web search engines, directories, and collaborative filtering systems
should be combined into unified systems based on the general concept of information
filtering. Such filtering can be used with Web pages, user reputations, and anything
subject to a price or a poll. An information filtering mechanism can supplement or
perhaps supplant markets and other institutions.

Computers are best at processing large amounts of textual information quickly and
making a good first guess on such attributes of a page as what category it belongs in,
what other pages it is close to, and its rank relative to the other pages. Communities
supporting user reputations are best at final judgments.

A system that combines a Web directory and search engine can be built by spi-
dering off the initial directory pages and using a multi-resolution version of the Naive
Bayes algorithm that classifies the new pages in a scalable manner. T also show that
links can add valuable information about what category in which a page belongs.

By collecting human judgments about a set of pages, I find only a weak relationship
between these judgments and a count of in-links to these pages. If human judgments
are what one is looking for, there is no way to get such judgments that is better than

gathering them directly, through collaborative filtering.



xvii

I experiment with various ways of clustering web pages, first by using links and
pruning out highly-referenced pages, second by using the WordNet electronic lexicon,
and third by using semantic networks constructed from the document text. All of
these methods are successful, to varying degrees.

I build a linear system for collaborative filtering with an explicit relation between
document and author. Ratings of documents reflect on their authors, and these
influence the weight given to their rating of other documents. Such a system is shown

to be stable after relaxation.
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Chapter 1

Introduction

Whatever may be the limitations which trammel inquiry elsewhere, we
believe that the great state University of Wisconsin should ever encour-
age that continual and fearless sifting and winnowing by which alone the
truth can be found. (Statement of the Board of Regents, University of
Wisconsin, 1894)*

1.1 Information Filtering

As anyone who has not spent the last several years with their head, ostrich-like, buried
in the sand knows, the World Wide Web and its substrate or super-set, the Internet,
have been growing by leaps and bounds over the last several years. Since the Web is

democratic (in the sense that almost anyone, at least in countries in the developed

IThis statement, which is found on a plaque outside Bascom Hall, the main adminis-
trative building of University of Wisconsin-Madison, was the result of an interesting bat-
tle over academic freedom. For more details, see the Wisconsin Electronic Reader at
http://www library.wisc.edu/etext/WIReader/Contents/Sifting.html.



world, can create a Web page or site?) and decentralized, it tends to be rather chaotic
and disorganized. People searching the Web have difficulty finding useful information,
and often have to sift through large numbers of relatively useless pages in order to
find the information for which they are looking.

The purpose of this thesis is to explore how the Web might be better organized
through the use of various manual, collaborative, and automatic techniques. In addi-
tion, I discuss how such improved organization could be used in service of improving
the quality and productivity of people acting together in communities. Organizational
techniques that have been used by researchers and practitioners include: unsupervised
page clustering based on a page similarity metric (e.g. [118][126][130]), manual page
classification (as practiced by Yahoo! or About.com), automatic page classification
based on learning from manually classified pages (e.g. [60][80]), accessing page con-
tent and significance via an examination of the hyper-link structure of the Web (e.g.
[14][21]), and accessing page relevance and page quality via user feedback and user
modeling (e.g. [8][112]).

The argument of this thesis is that the concept of information filtering [81] can
generalize the techniques commonly used to organize information on the Web. I
define information filtering as a general process whereby information on the Web
is selected, ranked, and organized for presentation to a user. The information is
filtered on the basis of a user query or other user interaction (such as selecting from a
menu). In this thesis, I will attempt to show that techniques such as search engines,

semantic networks, directories, and collaboration systems can be combined so as to

2Although one can argue that it is not any more democratic than any other communications
medium, because those with more financial or other social resources can gain much more attention
on the web than those who do not, in many cases, even within the relatively wealthy countries.



be likely to produce a better organization of Web pages than any of these techniques
on their own. All of these systems act as filters of one kind or another, usually
using different information to do their filtering. Link information alone is unlikely to
disentangle pages that are thematically different but linked together; semantic content
information is likely to be needed to separate pages into their categories. Web sites
and Web pages can be usefully said to have the following (non-exhaustive) list of

properties:

e How popular they are

e How useful or informative they are (this is relative to the individual that is
using them and the particular task that that individual has in mind, although
one could also devise a concept of general usefulness or informativeness). This
may be measured by user ratings or by document analysis techniques designed

to measure the specific content of a document.

e How many other sites and pages link to them (which is related to the first item
above, their popularity; if this is high the Clever project [58| calls the page an

“authority;” links may also relate to usefulness)

e How many other sites and pages they link to (if this is high the Clever project

calls the page a “hub”).

e What they are about (this is similar to their classification in a library card
catalog); note that any particular page or site, like any particular book or

article, may have several classifications



e Where they are in the hyperspace of the Web; that is, what neighborhood they
are in relative to other sites. So, for instance, sites about art museums tend to

be closer to sites about Picasso than sites about mountain biking.

e What institution they are associated with (if any), and where this institution

is physically located

e What people are associated with the page, as authors of the page or as individ-

uals described on the page

Search engines and agents that hope to provide useful information to people who seek
it need to compile much of the above information about Web sites and pages in order
to help filter the sites and pages. One heuristic might be the following: if a user
makes a low rating of a particular page on a site, the engine or agent should adapt its
behavior, giving a low ranking to other pages on that site, on the assumption that if
the site has one lousy page, it is likely to have others, if they are all authored by the
same person or institution. Particular institutions or individuals may become, in the
view of users, high or low quality providers of information. However, if a page from
a previously low rated site appears to have a large amount of content on it, perhaps
measured by the presence of a lot of specific words on the page, than that page may
be promoted so that the user may make a second evaluation. More recent evaluations
should be weighted higher than older ones.

A particular query to a search engine or directory constitutes a partial description
of a particular search task; that is, the person composing the query usually has a
better idea of what he or she is looking for than is embodied in the query. That is,

the searcher is typically not good at expressing her needs in terms of a query. For



instance, I was interested in whether or not HDTV (high-definition TV) programming
would be available on DVD media, so I typed the query “+HDTV +DVD” into Yahoo!
to try to find pages that contained both concepts. If the search engine were smart,
I could have told it what I wanted to know in natural language, and it would be
able to find a page that answered the specific question I had, if such a page existed.
Much research has gone into trying to understand natural language queries, and
little progress, in terms of the development of practical, deployed systems, has been
made outside of tightly-defined topic areas.> Currently, approaches to organizing

information on the Web can mainly be divided into the following categories:

1. Classification into categories (such as done by systems like Yahoo!—at
www.yahoo.com—or the Open Directory Project—at www.dmoz.org) [83]. Typ-
ically, such systems organize Web pages into hierarchies, in a manner similar
to a card catalog in a library. These projects are very intensive in terms of
human labor. Ironically, very little automation has been used in the construc-
tion of such hierarchies, beyond simple utilities for the insertion of links and
maintenance of hierarchies. I will suggest ways in which additional automation
can vastly improve the construction of such hierarchies, while at the same time

making them more useful.

2. Organization created implicitly by search engines such as Google—at
www.google.com—or AltaVista—at www.altavista.com—which build inverse key-

word indexes of pages that they gather by spidering the Web. Each keyword or

31 tried the “hdtv dvd” query on Ask Jeeves (at www.ask.com), the best known of the natural-
language based search engines, and it came up with five questions and answers, none of which were
what I was looking for. The question “When will HDTV movies be available on DVD?” fared no
better. It appears that Ask Jeeves only works well when the question entered matches one of the
case frames that the system already knows about.



logical expression constructed out of keywords implies a set of pages that are
implicitly organized into a class. The system then has the problem of ranking
the documents in the query result; often some combination of the in-links to
each page and the frequency of occurrence of the search keywords on each page
in the list. Often, searchers—especially those with little searching experience—
find it difficult to use search engines to locate the information for which they

are looking.

. Manual “hub” pages built by individuals or corporate entities gathering together

a number of links on a specific topic or a set of closely-related topics.

. Pages that contain collectively-maintained definitive information about a partic-
ular topic, such as frequently-asked-question (FAQ) files. Such pages often have
many other pages pointing to them, and have been referred to in the literature

as “authorities.”

. Organization created by collaborative filtering of information items [44, 108|. In
collaborative filtering, user preferences are collected and aggregated, and users
are matched with users with similar interests using matching algorithms, such
as simple correlations of their preference vectors.

Some of the best known examples of these are the GroupLens system [108],
which collaboratively filters Usenet news articles, and the MovieLens system
[28], which collaboratively filters movies. There are emerging systems for col-
laboratively filtering postings on Web sites, such as the system used by the
popular Slashdot Web site (at www.slashdot.org), and the system used by Ad-

vogato (at www.advogato.org), which uses rings of trust modeled on those used



in cryptography, to build up hierarchies among open source software develop-
ers. However, collaborative filtering systems suffer from difficulties in collecting
sufficient ratings to make them work well. I believe that there are ways that
existing social networks may be exploited in order to overcome this problem.

Note that it is important to recognize that the rankings that Web search engines
put on pages are really just a poor substitute for the rankings that could be
gathered using collaborative filtering systems. Web pages become just of the
one of the many entities in the world, physical, institutional, and informational,

that could be filtered by communities acting collectively.

. Organization derived from knowledge of the semantic structure of the English
language. Word co-occurrence matrices of English words that are mined from
large corpora of English text (often derived from the Web itself) can reveal se-
mantic relations between words. Typically (such in the HAL system [17]) such
systems use a window that slides through the text to determine related words.
The word “car” is more likely to appear near the word “engine” than an unre-
lated word such as “kidney.” Semantic “neighborhoods” can be constructed in
this manner, and then each of these neighborhoods can be used as a method of
“keying” into a large set of Web pages. This allows the user to map the semantic
space of English onto the semantic space of the Web, and to discover connec-
tions between Web pages that are not revealed by the actual links between the
pages. A related technique is Latent Semantic Indexing (LSI), which I describe
in more detail in Section 2.9.2.

An alternative way to map the semantic spaces in English to semantic spaces

on the Web is to use manually constructed taxonomies of English semantics.



The best known of such taxonomies is WordNet [35], which was developed at
Princeton, and consists of a large dictionary of English along with semantic
relations between the words in that dictionary. These semantic relations them-
selves can be used to construct semantic neighborhoods of words which can then

be mapped onto corresponding sets of Web pages.

7. Both of the above approaches—using semantic neighborhoods—help reduce
cross-talk between unrelated query results. For instance, typing the query
“jaguar” into a search engine results in a set of hits. Some of these are about
the wild cat, some are about the car, some are about the (Jacksonville, Florida)
football team, some are about an old Atari video name called Jaguar, and some
are about some chemistry software called Jaguar. Most search engines do not
do a good job of separating out these hits from one another (the Northern Light
(at www.northernlight.com) search engine is one of the only engines that actu-
ally tries to do so?). Partly this is due to the fact that it is difficult to separate
these results on the fly. I argue that it is necessary to separate these results
from one another explicitly during the process of building the index that the
search engine uses (that is, during the spidering and indexing process) rather
than during the actual search process, because it would usually be too slow to
do it during the search and still give very speedy results. Approaches involving
the semantic neighborhoods described above can have this effect. In addition,
clusters of Web pages can be constructed using traditional methods from the

information retrieval literature which involve the vector space model and dot

4However, recently Northern Light has discontinued its public web search function, and newer
search engines that do separate results have emerged; see section 6.1.6 for an evaluation of these.



products to measure document similarities, but some of these algorithms can
be quite expensive in terms of computer time, and therefore must be used with

care.

8. Unsupervised techniques such as topic spotting or key phrase extraction can be
used to identify topics using key phrases in documents, which can then be used

to organize results [37, 124].

One of the main arguments of this thesis is that many of the above activities for finding
and organizing information on the Web can be generalized to a single activity which
I, following others including [81], simply call information filtering, and this is best
understood as an activity that is explicitly social in nature, rather than individual.
This is not surprising, because human language itself, the basis of much of the Web,
is a social rather than an individual phenomenon. I use the term information filtering
very broadly; I argue that collaborative filtering systems, text clustering systems,
manual and automatic text classification systems, and Web search engines are all
engaged in information filtering, and the best systems would combine all of the powers
of these techniques.

I argue also that information filtering is simply one example of commodity, insti-
tutional and social filtering that goes on broadly in society, when people select their
cars, their colleges, their mates, their restaurants, and their jobs, for instance. But
with respect to the domain of information, which is critical to all of these other activ-
ities, since information is used to represent all of these other entities, the reason for
the emphasis on information filtering is because individuals and groups have as one

of their primary problems in dealing with information, especially in the Internet con-
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text, the problem of a signal-to-noise ratios that is lower than desirable. In familiar
terms, there is just too much spam and other low-quality material out there.

Web search queries are likely to be governed by Zipf’s law |5|, which governs such
phenomena as the sales of books, box office revenues of movies, the frequencies of
words in texts, etc. Zipf’s law says that the popularity of the nth most popular (or
frequently used or consumed) item is proportional to 1/(n*), where k is an exponent,
close to one. This popularity could be measured in terms of the number of in-links,
or in the number of times the page is visited in a given period of time. This is a
hyperbolic distribution [72]. Because of this distribution, the lion’s share of queries
are likely to be taken up by the most frequent queries, so it is these that merit the
most attention by those attempting to organize the output of search results.

Too often, as well, the information searching activity is thought of narrowly, in
the information science paradigm, of the individual searcher forming queries to a
traditional search engine. I think the reason we think about this activity this way
is because we have a culture that is very individualistic. I believe that we need to
re-conceptualize searching activity as the activity of communities of people who have
common interests. Each individual participates in a set of communities, based on her

interests.

1.2 Web User Modeling: Interests, Agents, and

Feedback

Most Web users have a set of particular interests, and their Web searches are intended

to serve these interests. Thus, they are most interested in highly informative sites
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that are relevant to these particular interests. Each Web search can be viewed as an
expression of these interests. If a search engine registers users, and remembers their
searches, it can create a profile for each user. It can then use this profile to act as
a robot or agent that continually searches out information of interest to that user.
People are more likely to invest energy in evaluating information that is within their
set of interests. This is because they have a sense of participation in a community,
and know that their evaluations will be of use to the community.

Each user’s interest makes him or her implicitly a member of a community. For
instance, if I like Eric Clapton, I am a member of the community of Eric Clapton
fans. This community has a number of Web sites, which are linked to one another.

The Web is already organized into thousands of communities around these par-
ticular interests. Some of these communities are explicitly organized as such. For
instance, Geocities (part of Yahoo! at geocities.yahoo.com) organizes its user pages
in thematic areas, such as computers, politics, entertainment, etc. Webrings (see we-
bring.org) have been created to organize related pages on specific topics into circular
linked lists. However, there has been relatively little effort expended to rate pages
within specific topic areas and provide users with the pages that are top-rated and
contain high amounts of content.

Collaborative filtering, in which users rate items, and then are given access to
the aggregated preferences of those with similar preferences to their own, has shown
promise in a number of areas. MovieLens (at movielens.umn.edu) has applied collabo-
rative filtering to movies, and Jester has applied it to jokes (at
shadow.ieor.berkeley.edu/humor/). Some companies are applying it to consumer

product selection. Collaborative filtering goes a step beyond simple polling, such as
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is used by the Zagat restaurant guides (at www.zagat.com), and the Internet Movie
Database (at www.imdb.com).

Most people who use the Web find information either through the use of search
engines, which tend to be simple in design, manually organized directories such as Ya-
hoo!, and manually compiled reports such as the Internet Scout (at scout.cs.wisc.edu).
Automated user agents that search out information of interest to the user, inform her
of it over electronic mail, and then elicit her feedback about it, are not widely de-
ployed, which is disappointing, given all the hype about user agents over the years.
One way that such an agent might work is by having a user fill out an online ques-
tionnaire with his or her interests. The categories in an existing Web directory (such
as dmoz.org) could be used as the database of interests. The interests of each user
could be compared with the user-interest database and the user could be informed
(via electronic mail) about other categories that they may be interested in (based on
the interests of users that have a similar interest set to their own). This is a ver-
sion of collaborative filtering, where the items being filtered are interests in subject
categories.

Users would have continuous access to their set of interests and could update
them at will. At a desired frequency (daily, weekly, etc.) the user would receive an
electronic mail message with a set of Web sites in it which match their interests and
have a high content level. This content level could be measured by the ratings of
other users and the number of in-links that each site gets. The email would contain
URLs that take the user to a screen with a small window at the top that allows them
to rate that site on quality and on how well it matches their interests.

This provides data that can be used to update overall ratings and determine which
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sites are selected for other users. In addition, users can select sites as being partic-
ularly informative, and these selections are then electronically mailed to a sample of
users that share similar interests.

Another way to recruit users with specific interests is to post messages to topical
newsgroups. One could post a message in the mountain biking newsgroup offering to
track activity on the Web related to mountain biking. Users would sign up for the
tracking service on a Web page. When sufficient salient links were gathered about
mountain biking, each user that signed up for the tracking service would receive an
electronic mail containing these links, which they would then be invited to rate.

The salience of page for a particular user would be determined by four factors:
the ratings of the page by other users similar to that user (collaborative filtering),
the content level of the site (based on some property of the text like the number of
category-specific words used, weighted by how specific they are), the number of other
pages on the Web that link to the page in question, and the number of other pages the
site links to. One may want to discount many links to or from a particular domain,
to avoid the problem of web site owners who add extra links just to increase their

pages’ ranks in search engine results.

1.3 Overview of the Thesis

In large part, this thesis proposes and evaluates novel mechanisms whereby groups of
users can work together to achieve effective information filtering. These mechanisms
represent some of the steps that I think that would be needed in order to build

collaborative information filtering systems like those I have been describing above.
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This is done in particular by the use of using link and textual information to classify
pages on a topic as outlined in Section 3.3, by merging Web directories and search
engines as described in Chapter 4, by a web feedback system as described in Chapter
5, by clustering Web pages as described in Chapter 6, and through a collaboration
system as described in Section 7.3. Despite the supposedly individualistic nature of
American society, I argue that the logical way to build a Web that serves people is to
build a Web that serves groups, and each person gets his or her service from the Web
by virtue of his or her membership in several groups. The mechanisms proposed and
evaluated herein largely have that as their goal.

Following is an overview of the remaining chapters in this thesis.

Chapter 2 reviews the literature that is relevant to this thesis, including research
on Web topology and growth, on page ranking in search engines, on verbal ontologies
such as WordNet, on document and concept similarity, and on document clustering
and classification.

Chapter 3 explores various ways in which link information might be used in order
to improve document classification. First, I experiment with a set of pre-classified
pages (all about Wisconsin public-policy topics) and see to what extent link informa-
tion between these pages can be used to classify them. I also test such a classification
with another set of pre-classified pages, which are drawn from a section of the Open
Directory (at www.dmoz.org). Finally, I compare a number of variants of the Naive
Bayes algorithm, some of which incorporate link information, to see whether the use
of link information can effectively improve this algorithm.

Chapter 4 explores the fusion of search engines and web directories. Here, one

of the main ideas is to spider off existing pre-classified pages in an attempt to find
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additional pages which fit in that category or nearby categories. I discuss my efforts
to build so-called “vertical portals;” that is, pages on the web that gather information
on particular topics using such a strategy. Ultimately, a large set of vertical portals
can be merged to create a directory that grows automatically or with the aid of a
collaborating community that uses each portal. Such a directory can be merged with
a search engine, as well.

Also in Chapter 4, T experiment with a multi-resolution version of the Naive Bayes
algorithm which classifies pages first at a low level of resolution (into a broad category)
and then at an higher level (into a narrow category). I experiment with this algorithm
using both pre-classified pages and pages that are linked off of pre-classified pages.
Finally, I see to what extent keywords that are characteristic of a particular category
(they appear more frequently or less frequently in that category than average) can be
used, in conjunction with inverted-keyword-index search engines, to find more pages
that fall into a particular category.

Chapter 5 examines the use of relevance and quality judgments of Web pages
drawn from sets of human subjects to rank such pages. Here, the subjects were told
that relevance is defined with respect to a category that the subjects are told to judge
its extent of membership in, and quality is a global quantity. I gathered a set of such
measures by having a group of students rate a set of pre-classified pages. I explore
whether the presence of any particular keyword on a page was related to that page
getting a high relevance or quality judgment. I also explore whether either of these
measures is well-correlated with the page rankings given by public search engines.

Chapter 6 explores some ideas for clustering Web pages. This chapter makes heavy

use of lists of pages that are output from ambiguous search engine queries. First, I look
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at using connected components of the Web (sets of pages connected by hyper-links,
that is) to find semantically-related pages. However, I find, by experimentation, that
semantically-unrelated pages tend to be connected through very-highly-referenced
pages on the Web (such as the Yahoo! home page at www.yahoo.com). Therefore, I
prune such pages from the graph, which improves performance, and actually provides
quite neat semantic separation without the use of any of the textual information on
the pages.

In the next section of Chapter 6, I look at the use of WordNet for disambiguating
sets of pages. Here, I again have a set of pages output from a search engine as the
result of an ambiguous query, and I experiment to see how well WordNet can separate
the pages into separate categories.

In the final section of Chapter 6, I look at the use of HAL-based semantic networks
to disambiguate sets of pages. Such networks allow us to see what pairs and sets of
keywords occur together. Such pairs or sets can be then used to separate the set of
pages that is the result of an ambiguous query into subsets representing each meaning.
I suggest the use of a interactive system for doing this, because the machine alone
may not function as well as one that combines the strengths of man and machine.

Chapter 7 discusses various systems that have been built in recent years for collab-
orative filtering, and closely related discussion systems which attempt to keep track
of the prestige of the various participants in the system. I suggest that such systems
can be merged with vertical portals and search engines. I also build a simulation of a
system in which both documents and authors get ratings, and the authorship relation
between documents and authors is preserved, and propose embedding such a system

in the Web bymaking use of meta-data about authorship.
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In Chapter 8, I conclude with a summary of the results of the thesis. I also propose
in this chapter an integrated system which incorporates many of the techniques and

ideas I have proposed in this thesis.
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Chapter 2

Background

This chapter reviews literature that is relevant to various parts of this thesis. This
literature includes research on Web topology and growth, on the relations between
the Web and real-world entities, on the electronic dictionary system WordNet (which
I use in Chapter 6), on how to rank pages in Web search engines, on document and
concept similarity, on document clustering and related techniques, and on how to
classify and cluster web pages. The reader familiar with the any or all of the material
covered in this chapter may feel free to skip some sections or the whole chapter. All
the background material I am presenting for this thesis is found in this chapter, with
the following exception: the background to the collaborative model built in Section

7.3 is found in Section 7.2.
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2.1 Web Topology and Growth

I include this section to give the reader a sense of the problems of scale that are faced
by architects of search engines and directories; the task of information management
on the Web is colossal, and growing daily. This thesis is largely concerned with such
information management, from the point of view of the individual user and of groups
of users. I also include this section to give the reader a sense of the topology of the
Web, which will come into play in this thesis especially in Section 6.1, which is about
the use of connected components for semantic disambiguation.

Mathematically, the Web can be thought of as a directed graph. Because the Web
is a social artifact, the result of the collective activity of a large number of people, who
are acting somewhat independently, we might expect that the connectivity structure
of the Web would be non-random, but not regular. It turns out, upon empirical
investigation, that the Web is an instance of a “small world” network. Small world
networks are networks that “can be highly clustered, like regular networks, yet have
small characteristic path lengths, like random graphs [121].” This is not surprising,
because the Web reflects social networks, and small world networks are common in
the social world, and are illustrated by the parlor game “Six Degrees of Kevin Bacon.”

A player in this game is given the name of an actor and is required to connect
that actor with Kevin Bacon by a chain of no more than six movies. This is usually
possible, because Kevin Bacon has been in a lot of movies and (more importantly)
the social structure expressed by movie casts has a low mean distance between actors.

It is difficult to study the topology of the Web in full because of its size (Google

says that they index slightly under 2.5 billion documents in mid-2002, and this is
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growing rapidly); even the most exhaustive search engine (at this writing, supposedly
Northern Light, but this is disputed by Google and others) reportedly only covers
somewhat over a third of the pages on the Web [66].

By studying the local structure of a very large Web site (wd.edu, at the University
of Notre Dame), and then extending its properties to a larger model, Albert, Jeong,
and Barabasi [3| have calculated that the present diameter of the Web is about 19
links, meaning that, on average, it takes no more than 19 links to get from any random
page on the Web to any other page. (Of course, finding this path is a computationally
intensive task in practice, and in some cases, pages are not connected at all). In
addition, this path length is expected to grow only with the log of the number of
pages. This is because, for instance, you can increase the path length by only one by
adding ten new pages linked off of each existing page, while increasing the number of
pages by a factor of ten.

Thus, exponential growth (if it exists, and if it continues) in the size of the Web
will only increase this value (of 19) by a few more links, if that, in the next few years.
Albert et al.’s work fits in well with the work of the Clever project |58] on “authority”
and “hub” sites; it is likely that these sites pay a major role in connecting relatively
obscure pages. For instance, a page on jaguars (the animal) (an obscure one not listed
in Yahoo!) could link to a page that was authoritative on jaguars (say, one put out
by the Bronx Zoo). The latter page is listed in Yahoo!, and Yahoo! then links this
original page to other obscure pages through other authoritative pages that it links.
Yahoo! is very large in size, the Bronx Zoo’s site is intermediate, and the obscure
sites consist of a single or a few pages. The hierarchy of the Web reflects the hierarchy

in the social world.
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Albert, Jeong, and Barabasi also found that the number of in-links and out-links
on any particular page is approximately governed by a power law. The probability
that a given page has 10* links inward is given by about k — 2.45 for out-links and
k — 2.1 for in-links. So there are very few pages with very high numbers of in-links
and out-links; most pages have a low to moderate number. Huberman and Adamic
[53| found a similar power law in the size structure of the Web. They found that the
probability that a site (defined by a root domain name, such as www.wisc.edu) has
10* pages is approximately proportional to k — b, where b is a constant. Thus log
probability versus log size appear as a straight line. They got this information from
two Web spiders, which regularly “crawl” Web sites looking for pages. This result
allows one to estimate what fraction of a particular set of sites will have a given size.

Broder et al. [15] verified the power law for Web in-links on a larger Web crawl
than that done by Albert, Jeong and Barabasi. They also discovered something about
the topology of the Web. If viewed as an undirected graph (reducing directed links to
undirected ones), they found that over 90 percent of the pages in their 203-million-
page crawl form a single connected component, and the rest of the pages are not
connected to this large component. If one looks at this large connected component
from the point of view of directed links, it is divided into four pieces, which they call
SCC, IN, OUT, and TENDRILS.

The first is a strongly connected component (SCC) which contains about 56 million
pages. (A strongly connected directed graph is defined as a graph in which any node
can be reached from any other along a path consisting of directed links.) The IN
piece contains pages that can reach the SCC (again, along directed links), but cannot

be reached from it. The OUT piece contains pages that can be reached from the
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SCC, but cannot reach it. Finally, the TENDRILS contain pages that cannot be
reached from the SCC and cannot reach it. (Note that each of these last three pieces
is not a strongly connected or connected graph). They find that the central core has
a diameter of at least 28, and that the overall diameter of the graph is over 500. They
also found that the chance that any path (directed or undirected) exists between any
two nodes chosen at random is only 24 percent, and that if a directed path exists, its
average length will be about 24. If an undirected path exists, its average length will

be about 6.

2.2 The Web and the Real World

To a large extent, the Web reflects the structure of the actual world. Not only do
pages, like traditional texts, refer to and describe objects, events, people, places, and
institutions, but the Web reflects part of the actual structure of the (social) world.
For instance, companies and non-profit institutions have home pages which reflect
some of the properties of those entities. Many people have home pages as well. The
pages of these institutions and of the people tend to be related to one another that is
similar in structure to actual social relations. So, for instance, one institution tends
to have links to other institutions of which it is a part or with which it interacts. Of
course, the Web is still elitist; only the more wired among us have much of a presence
on the Web at all, although many—perhaps most——people are at least listed in online
phone directories (at least in developed countries). Projects like Lenat’s CYC [67]
(built by his company Cycorp, at www.cyc.com) have attempted to construct an

ontology in symbols (typically in predicate-logic formalisms such as can be processed
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by languages such as Prolog and Lisp, as well as more ordinary languages like C and
C+-+) that reflects the actual ontology, the hierarchical and compositional structure
of entities, objects, actions, and events, that exists in the real world. Tim Berners-Lee,
the founder of the Web, has more recently been promoting the idea of a “Semantic
Web” [10].

This is a version of the Web in which Web pages contain not only the direct
HTML or XML [12] that allows them to be rendered by a browser, but also meta-data
description about the content of the Web pages that is readable by other computers.
Some of this meta-data may be found by information extraction (e.g. [116, 19, 24]),
and some may be explicitly provided by the Web page authors.

So, for instance, a page for a doctor’s office would not only contain whatever
ordinary readable information, such as a description of the doctor’s credentials, the
office location, the hours, etc., but these data would also be encoded in a predicate
logic form so that other computers (clients) on the Web could read and process them.
So, for instance, a traveling patient seeking an appointment with a doctor might
have her mobile client contact her main doctor’s office server, which processes an
automatic referral to a trusted network of other doctors, which queries this network
to see which doctors are within a particular radius of the patient’s current location.
Then the schedules of the patient and the schedules of the doctors negotiate a time
and an appointment is set up. Medical histories are transferred. All of this needs to
be done with proper attention to user authentication and privacy considerations.

Thus the construction of machine-usable meta-data to accompany Web pages is
very important to such a vision of a future Web. Classfication, clustering, and group

collaboration as described in this thesis can help construct such meta-data.
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2.3 WordNet

WordNet |35], an electronic English dictionary and semantic network built at Prince-
ton under the direction of renowned psychologist George Miller, contains an ontology
similar to that proposed for the Semantic Web. This ontology is implicit in the hi-
erarchy of concepts that exists within it. WordNet was built to create a dictionary
that more accurately reflects the relations between words than traditional alphabetic
directories, or even thesauruses, do. The latter lists synonyms, but synonymy is only
one of many relations between words, as we will see below. WordNet is useful as an
interactive dictionary, and it has had wide-ranging applications in automated process-
ing of natural language, including applications in knowledge extraction (e.g [6]), text
categorization (e.g. [43]), document analysis (e.g. [117]), and sense disambiguation
(e.g. [71][110]). The WordNet Web site at www.cogsci.princeton.edu/~wn lists many
publications that make use of WordNet. I make use of WordNet in Section 6.2, which
describes experiments in using WordNet to disambiguate the results returned by a
Web search engine.

Since WordNet’s hierarchy reflects the actual world, it can be used as a directory
for the purposes of classifying Web pages. That is, individual concepts in WordNet
can serve as categories for classification of Web pages. However, it is not complete.
For instance, while it “knows” about a “university,” which has three senses in WordNet,
it does not know about the University of Wisconsin, which Yahoo! and other Web
directories know about, because their directories have been constructed manually on
the basis of large numbers of external pages, whereas WordNet’s designers were not

interested in encompassing the entire world in their ontology, but only the world
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that is described by (mainly individual) English words. Thus WordNet lacks a lot
a specific knowledge, especially about proper nouns. For instance, WordNet only
contains one meaning of “jaguar,” its literal meaning as a type of wild cat, and not
the way the word has been used to name other things, notably cars, a football team,
and a video game. Since WordNet’s ontology is designed to describe the semantics
of words, not of whole documents, WordNet only links nouns with their synonyms,
hypernyms, hyponyms, meronyms, and coordinate terms (described below).

It does not link words that are semantically linked by virtue of belonging to the
same topic or activity. For instance, “photograph” and “darkroom” are not linked in
WordNet, even though they are both part of the activity of photography. In fact,
“photograph” and “photography” are not even directly linked in WordNet. Words in
WordNet are arranged in synsets, which are sets of words with the same meaning.
Thus, each synset in WordNet represents a distinct concept. Concepts are not de-
scribed explicitly. Rather, they are described in terms of the set of words in their
associated synset.

Thus two senses of the world “board” are expressed by two synsets. The first
contains the words “board” and “plank” and the second contains the words “board”
and “committee.” A noun, if it has many senses (meanings, that is), is listed in
multiple synsets. For instance, the word “board” has 13 senses in WordNet, 9 as a
noun, and 4 as a verb. It turns out that there is a close relationship between the
number of synsets a word participates in and its frequency in the language. The word
“board” is a relatively frequent word, and has a lot of senses. WordNet also contains
many short phrases to describe concepts that serve as hypernyms of actual words.

So, for instance, the phrase “medical care” is in a synset with the phrase “medical
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aid” and has hyponyms that include “therapy,” “nursing care,” and “disinfection.”

“Therapy” in turn has hyponyms “psychotherapy” and “chemotherapy,” among
others. A hypernym of a word is a word that describes a super-set of a given word.
So, for instance, the word “canine” is a hypernym of the word “dog,” and the word
carnivore is a hypernym of the word canine. Hypernymy is transitive, so the word
“carnivore” is also a hypernym of the word “dog.” Hyponymy is the opposite of
hypernymy, and is also transitive, so “dog” is a hyponym of “carnivore” and of “canine.”
Coordinate terms are terms that are sisters in the tree formed by the hypernymy-
hyponymy relation. Thus “lion,” “tiger,” and “jaguar” are all coordinate terms, as all
being types of cats. Coordinate terms are clearly useful in determining the “semantic
neighborhood” of a document.

One can think of a set of coordinate terms as corresponding to a particular topic.
If a document contains a lot of coordinate terms, it is likely to be at least in part
about the corresponding topic. So if “lion,” “jaguar,” and “tiger” all appear in a
given document, chances are high that the document is at least at part about cats,
although it is possible to think of counter-examples, for instance, the sentence “I drove
my Jaguar (a car) to the Food Lion (a supermarket) and on the way my girlfriend

kissed me and called me a real tiger (metaphor).”

However, in general, this makes
a good heuristic. A query of “+jaguar +lion +tiger” in the AltaVista search engine
found pages that were mainly about wildcats, although there was also a page that
listed sports teams that used those names, a page for mascot costumes based on those
animals, and a page where spies used those names as code names.

But the vast majority of the results were pages that were actually about wild cats,

which indicates that the presence of a large number of coordinate terms is a good



27

heuristic for assigning a topic to a page. Meronymy captures the part-whole relation
in WordNet. The word “thigh” is a meronym of “leg,” and “leg” is a meronym of
“human body” in one of its senses, of “chair” or “table” in another, and of “journey” in
yet another. Homonymy is the opposite of meronymy; thus “journey” is a homonym
of “leg.”

You can see how WordNet could therefore be used for knowledge discovery from
texts. For instance, if the word “leg” and “journey” appear in close proximity in a
text, a program might conclude from this that the sense of leg being used is the one
related to a journey. Of course, it is easy to think of counter-examples, for example,
the sentence “the journey was so long that my legs were tired.” WordNet has many
applications in linguistic research and natural language processing, not all of which
are immediately relevant to our purposes. For instance, WordNet has application to
simple word-sense disambiguation (in the context of single sentences), but this is not
something that we are immediately interested in in our efforts to classify and organize
Web pages.

In the information-retrieval context, and for the Web, WordNet can be applied
in a variety of fashions. Web pages can be analyzed in terms of their “semantic
neighborhoods.” That is, if a page contains a set of words that are all close to one
another in WordNet, this neighborhood can be said to define one of the topics of a
page. A given page may be in more than one of these semantic neighborhoods. These
neighborhoods can be used to automatically create Yahoo!-style directories out of
pages. However, these neighborhoods have their limitations, because words that are
not linked by one of the relations that WordNet uses but are actually semantically

linked in some other way will not be discovered.
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To give a greater specificity to the idea of a semantic neighborhood, consider the
following. Consider all the unique words on a particular Web page, after pruning
out very high frequency words. Then build all of the graphs that connect these
words by WordNet relations. For instance, if a particular page contains the words
“lion,” “jaguar,” “tiger,” “heart,” “liver,” and “stomach” (perhaps it is a page about
veterinary medicine of big cats) then the first three of these words are coordinate
terms in WordNet, as are the last three words. Each of these sets of three words
represents a small graph, which in this case is a completely-connected clique with a
triangle shape.

Each of these cliques can be viewed as a semantic neighborhood, and has (perhaps)
identified a topic of the page. (Normally, one would want to have a cutoff for the
minimum size of a semantic neighborhood, which seems to me would have to be
minimally three connected words; if you included all pairs of connected words, the
number of semantic neighborhoods associated with each page may be too great. This
may be the subject of experimental tuning to find minimal neighborhood sizes that
lead to the best performance, in terms of topic identification of pages and in terms of
clustering of pages.) The words in each of these semantic neighborhoods can then be
(separately, for each neighborhood, or together) passed to a search engine to identify
additional pages that are on a similar topic as the page in question. This can be used
to add a “find similar pages” facility to a browser or search engine.

Similarity between Web pages that one has already found (say, as the result of
a search-engine query) can be gauged by the degree to which they share semantic
neighborhoods in WordNet. For instance, if one page contains the words “lion,”

“jaguar,” and “tiger” and another contains the words “cheetah,” “lion,” and “leopard,”
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these pages have overlapping semantic neighborhoods, which overlap at the node

b3

“lion.” The number of overlapping neighborhoods, and their degree of overlap, can
be used as a measure of the semantic similarity between pages. If you have a set of
pages, these pairwise page similarities can be used to cluster pages, in the manner
standard in the information-retrieval literature. This is a similar idea to what I have
suggested elsewhere; the idea of using a hierarchical supervised learning algorithm
(e.g. a hierarchical, multi-resolution version of the Naive Bayes algorithm' which T
implement in Section 4.2) to separate search engine results by classifying the results
into the tree and then displaying the results organized by categories. The difference
is that that here the source of semantic information is WordNet, whereas in the
other case, it is pre-classified Web pages. Both make use of extensive human effort
(WordNet and Dmoz respectively).

WordNet can also be used in data mining and information extraction from Web
pages. Typically, such tasks are defined as the transformation of free text material
and other free-form data into data that is in a structured (fielded) form suitable
for further processing. The Web has been viewed as a major potential source of new
structured material, see, for example, |25]; the process of gathering it has been referred
to as “text data mining” by Hearst [49]. Hearst [48] has built a system for extracting
new instances of WordNet relations (that is, the relations, such as hypernymy and
synonymy, described above) directly from text. These relations can be used to extend
WordNet, and then the extended version of WordNet can be used in other systems.

Large numbers of random pages drawn from the Web can provide text and create

word frequency tables for all the words in WordNet (which has a large subset of the

!The ordinary, non-hierarchical version of this algorithm is used widely, for instance, in [55, 63,
87].
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words in English, except for proper names and rare words). Such tables are useful in
text processing, because the presence of less-frequently used words in a given docu-
ment tend to characterize that document better than the more-frequently used words
in the document. For instance, a document that contains the word “phlebotomy”
(surgical insertion into a vein) is likely to be on a medical topic. If this document
also contains common words like “will” or “do,” this tells us very little about its
topic. WordNet allows us to determine that this topic because “phlebotomy” is in the
ontological tree below “medical care,” one of its hypernyms.

WordNet can also be used in more pedestrian ways. For instance, it can be used to
determine if a given word is in fact an English word and what its base form is (although
WordNet does not contain many rare words, so this is a drawback). WordNet can

discover base forms because it understands the inflectional morphology of English.

2.4 The Clever Project: Hubs and Authorities

The Clever project at the IBM Almaden research laboratory |21, 58| distinguishes
between two varieties of important pages on the Web: authorities, which are pages
that are pointed to by a lot of other pages, and hubs, which are pages which point
to a lot of other pages. Hubs are useful because they centralize a lot of information
about other important pages, and authorities are important because they have a lot
of sites pointing to them and thus are likely to contain useful information, or at
least be popular. The Clever project’s approach is good at identifying pages that are
likely to be important or useful (although it may not be good at finding pages that

were recently added to the Web and therefore do not yet have many in-links). In
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addition, it may discount pages that are in a relatively less dense area of the Web.
For instance, there are many pages that contain the word “jaguar.” These pages may
be about the car, the Atari video game, the Jacksonville Jaguars football team, or the
actual wild cat that all of these other things are named after. Ironically, pages about
the animal appear less frequently than its three namesakes, presumably because Web
page authors are more interested in the namesakes.

The Clever project uses an iterative algorithm to compute scores for authorities
and hubs. The higher an authority’s score is, the better an authority it is said to be;
likewise for hubs. An authority’s score is determined by summing up the hub scores
of hubs pointing to it. This is done for all authorities, and then the scores of all hubs
are updated by summing the authority scores of all the authorities that each hub
points to update that hub’s scores. Then the scores are normalized by requiring that
the sum of the squares of each set of scores sum to one. These steps are repeated until
the scores converge, which they find (experimentally) occurs after about 20 iterations.
Note that this algorithm has complexity that is related to the number of pages being
processed and the density of links between them.

Kleinberg proves [58| that this algorithm is equivalent to finding the principal
eigenvectors of the matrices A” A and AAT, where A is the adjacency matrix formed
by viewing the connections between pages as a graph. These two principal eigen-
vectors contain the hub scores and the authority scores. Since there are well-known
methods for computing the eigenvectors of a matrix, it is not necessary to use the
iterative algorithm, but they retain it for its explanatory value. Kleinberg finds that
the non-principal eigenvectors sometimes contain useful information as well; for in-

stance, on the query “jaguar®,” the pages having the highest values on the principal
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eigenvector were about the Atari Jaguar product (a video game), the pages having
the highest positive values on the 2nd non-principal eigenvector were about the Jack-
sonville Jaguars football team, and the pages having the highest positive values on
the 3rd non-principal eigenvector were about the Jaguar automobile. The cliques or
clusters that I derive in Section 6.1.3 appear to be akin to these components, although
they are not derived in the same manner, but rather one that is more intuitive; see
that section for more details.

On the query “abortion,” the 3nd non-principal eigenvector separated pro-choice
sites (which had positive scores in the eigenvector) from pro-life sites (which had
negative scores). However, this is not a reliable way to find topics, even though
Kleinberg points out that nodes (in a graph) having relatively high positive values
on a particular non-principal eigenvector are often well-separated from nodes having
relatively high (in absolute value) negative values, and therefore may be on different
topics.

In general, one would expect that pages on a given topic will be on average further
away from pages on a different topic than they are from pages on the same topic. Of
course, this is only true on average, since pages on completely different topics may be
linked closely. For instance, if I like chimpanzees and Eric Clapton, pages on each of
these topics may be linked from my home page. Note the hub and authority scores
of a particular page say nothing about the content of a particular page, simply that
it is likely to be useful. They do not tell you anything about what the topic(s) of the
page are, or how much information the page contains on a topic. In fact, many hub
and authority pages may not contain much actual information, but are jumping off

points, such as Yahoo!, or a corporate or institutional home page. Some pages that
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contain a good deal of information, on the other hand, may not be linked into by

many other pages.

2.5 Page Ranking Techniques

Many of the major search engines do not disclose the details of their operations, but
it is widely believed that most search engines have traditionally used two factors as
the main considerations for determining how to rank their search results. The first of
these factors is the presence of the search keywords. The more frequently the search
keywords appear, and the more of them that appear on the page, the higher the
page is ranked. The other factor is the number of other pages that the search engine
knows about that point to a particular page. The pages with the higher in-links can
be ranked higher. Of course, both of these techniques lend themselves to a game
of cat and mouse between those maintaining and promoting Web pages and those
running search engines, because there are things that Web page maintainers can do
to raise both of these values, such as putting common search words in the META tags
of their HTML source or creating a lot of dummy Web pages that do nothing but
point to pages that they want to drive traffic to, by artificially boosting their rank in
the results of search engine queries.

The Google [14] search engine has been widely recognized as having provided a
partial solution to these problems. Google’s PageRank algorithm effectively measures
the overall popularity of a page in the global Web. All the pages that Google “knows”

about are assigned a positive-valued PageRank, and all the PageRanks sum to one.
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Thus, in technical terms, the distribution of PageRanks is a probability distribution?.
The PageRank of a particular page represents the probability that a Web surfer,
starting at any random place in the graph of the Web, will reach that page next.
Thus, the pages with higher PageRanks have more paths leading to them.
Formally, Google’s designers define the PageRank of a particular page v as the
following:
R(u)=c > # + cE(u)

VEBy

where R(u) is the rank of page u, B(u) is the set of pages pointing to u, N, is the
number of pages v points to, and c is a normalization constant inserted so that all the
ranks add to one. E(u) is a vector added to adjust for the problems of “rank sinks,” for
instance a pair of pages that point to each other and have one other page pointing to
one of them. Without this F(u) factor, such pages could accumulate rank, draining
it from other pages. The authors show that if R is initialized to practically any
value, then the PageRank will converge to the same final value, reflecting each page’s
accumulated weight from all the pages pointing to it, either directly or via a chain
(because the iterative nature of the algorithm allows the information to propagate).

I argue in this thesis that one needs to go beyond global ranking of pages; instead
each page needs to be ranked in a manner specific to the topic in which it appears, after
they have been separated into topics. I discuss how I have done such a contextualized

rating for a sample system in Section 4.1.

2This is because a probability distribution is defined as a distribution of positive numbers between
zero and one that sum to one.
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2.6 Spreading Activation

Another popular way of thinking about using links between pages to facilitate Web
use is by using the old concept (familiar to students of both artificial neural networks
and semantic networks) of spreading activation (see, for example, [4]). Pirolli, Pitkow,
and Rao [90] use this concept, and the concept of information foraging, in their efforts
to extract usable structures from the Web. Information foraging is the activity of a
user looking for information in some Web locality, which is some local part of the
directed graph that is the Web. It is important to think of Web searching activity as
part of the overall cognitive search activity of the learning human organism, which
Belew refers to as “finding out about” in his book on Web searching [9].

The concept of information foraging comes from the idea of an animal foraging
for food in an environment. Since information is a valuable resource, as is food, and
time, the goal of a foraging activity is to get the best food (or information) in the
least amount of time. The quality of information that is foraged from the Web is
measured by the information gain, a familiar concept from information theory [111].
Users of the Web, and of search engines and Web directories, can be thought of as
information foragers. One way that users can improve their foraging activity is to
identify ways to categorize information that allows them to quickly identify pages
that are likely to give them valuable information.

In addition, the idea of foraging fits in nicely with the idea of creating better
visualizations of the Web that allow people to more rapidly pull out what interests
them and what is likely to be most informative. Pirolli et al. discuss several ways

in which users can categorize pages. Placement of Web pages into sets can be useful
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in navigation, but pages on the Web are not explicitly placed into categories or
classified into types by their authors (except in some cases through the use of the
“META” HTML tag, which allows page authors to publish meta-information about
pages, such as keywords with which a page is associated).Thus it is necessary to
induce the type of a particular page.

Their taxonomy of types of pages follows. First, there are home pages, which they
call head pages, which may be personal or organizational. Second, there are index
pages, which are similar to what the Clever project calls hub pages. Third, there are
home pages of sites that have been explicitly built around a particular topic to serve
a community, which may not have a formal organization. A reference page is a page
that is used as a reference on a particular concept. A destination page is a kind of
reference page that other pages point to but does not point to any pages. Finally, a
content page contains information and is not primarily for navigation.

Pirolli et al. note that there are several kinds of information that are available
about a page. Its topic (via text similarity) and its connectivity to other pages
(its topology) are familiar to us. They note, however, that the URL, the file size,
modification date, and the page’s usage statistics may also be useful in categorizing
the page. The URL may indicate where the page belongs in the semantic hierarchy of
its site.®> Note that the usage statistics are typically only available to those running
the Web server and to the Webmaster of a particular site, not to the general public
or to search engines. The following statistics were kept by Pirolli et al. about each
page: its size, number of pages pointing to it (“in-links”), number of pages it points to

(“out-links”), the number of times it was requested (this information is only typically

30ften, as has been pointed out in [45] and by others, the structure of a Web site better reflects
the structure of the bureaucracy that built it rather than any other conceptual structure.
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available in the server log of the Web server, but they had access to this for the site
with which they were working, the Xerox site), the number of times the page was the
first page visited on a user’s traversal, and the textual similarity between it and its
children (pages to which it pointed).

They used these statistics to categorize pages based on the taxonomy that they
set up. They created a linear set of equations based on this set of features, where the
output is the type of page (there were 8 types). They set the weights used in the set
of equations manually. For instance, they assumed that content nodes would have few
in-links and few out-links, but relatively high file sizes, and thereby selected weights
of -1, -1, and +1 respectively on these features. They solve these equations, and
report, precisions for the automatic assignment of pages into the manually-assigned
categories ranging from 0.30 to 0.99, with all but one above 0.50.

The authors argue that the attachment of more meta-information (in programming
language lingo, assigning types; in set theory lingo, assigning set membership) to
pages can be a boon for user navigation and visualization of the Web. They give
examples like the following. If a Web surfer wants to find personal home pages that
are most similar to a particular personal home page, the system can use spreading
activation from the initial home page, stopping at a fixed number of steps, and output
all the other pages visited along the way that have also been identified, by mining
meta-information, as personal home pages. This is akin to the directed spidering
that I use in Sections 4.1 and 4.2, in which I start from pre-classified pages and use
a classification algorithm to determine the class membership of pages linked off of

those pages.
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2.7 The Term-Vector Model of Document Similarity

The term-vector model in text classification and clustering considers each document
as a vector of the terms appearing in it [5]. Such a model is widely used to create
structural relations within sets of text documents [105]. The terms (i.e., words) in
each document may be represented in a binary fashion (if a term is present it is
coded as 1, and if it is not present, as 0) or they may be coded by the numerical
frequency of a term in a document. Using such a representation, one common way
of estimating the similarity between documents is measured with the normalized dot
product (cosine) of the term vectors representing each document. Of course, there
may be hundreds of terms in each document, so these term vectors can be very long.
I make use of the term-vector model in my experiments with WordNet in Section 6.2.
Term vectors can also be normalized by dividing each value in the vector by the sum
of the squares of all values.

It is difficult to estimate the semantic similarity of documents because two docu-
ments can share no words in common yet be about the same topic. This is because
there are typically several synonyms that express the same underlying concept. At-
tempts to get around this problem typically use thesauruses, which list synonyms.
WordNet contains such a thesaurus among its components. Of course, the use of
thesauruses or other semantic information about terms in a document tends to in-
crease the number of terms describing a document and therefore increase the cost of

computing similarity.
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2.8 Concept Similarity

Ultimately, document similarity is based on the similarity of individual words and
concepts in each document. Jiang and Conrath [54] discuss ways to compute lexical
and concept similarity. One way uses the idea of the information content of a con-
cept in order to compute word and concept similarity. This is called an information
content-based or node-based approach. In information theory [111], the information
content of a concept is defined as the reciprocal of the log of the probability of ob-
serving an instance of that concept (among all possible observations of all concepts).
Since the probability of observing an instance is lower the more specific a concept is,
the information content is higher. This fits well with an intuitive understanding of
what “information content” means; telling me that something is an object does not
tell me much about it, while telling me that it is a jet airplane tells me a good deal
more. Telling me that it is a vehicle is intermediate in content.

Thus, if you have a ontology of concepts organized in a tree—which WordNet
also contains, along with the thesaurus information—the specificity and information
content of concepts increases monotonically as you move down toward the leaves of the
tree. Note that the information content of a document could be defined as the sum
of the information content of the distinct concepts that appear in that document.
This could be a way of distinguishing between documents that contain very little
information and those that contain a good deal, which could be useful on the Web,
because the Web contains many documents that contain very little usable information.

One way to define the similarity of two concepts is by the information content

of the most specific concept that subsumes both of the concepts. To determine the
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similarity of words that each have multiple senses, one uses the maximal similarity of
all the possible concept pairs. It still remains to estimate the values of the probability
of an instance of a concept. Jiang and Conrath [54| discuss several ways of doing this.
One way is simply to define the frequency of a concept by the total frequency of all the
words signifying it, which are all the words underneath it in the ontology tree. This
does not account for the fact that some words may have many meanings; one way
to try to correct for this is to assume that the word’s occurrences are evenly divided
among the concepts that it signifies, and therefore assign only an equal fraction of
each word’s occurrences to each concept. Whichever way the frequency of a concept
is defined, the probability of a concept is then estimated by its frequency divided by
the total frequency of all concepts.

Another way to compute concept similarity is what Jiang and Conrath refer to
as the edge-based method. Concept similarity increases as the distance between the
concepts in a semantic network such as WordNet is reduced. However, there is no
reason to assume that the weights assigned to each edge should be equal. For instance,
it has been argued |97] that if particular parts of a semantic network are particularly
dense, the distances between nodes should be reduced. Also, Jiang and Conrath
argue that distances should shrink as one moves down the tree toward the leaves,
since sister nodes are more similar as one moves down. In addition, if the semantic
network contains different kinds of links, such as IS-A, PART-OF, and SUBSTANCE-

OF links, one may want to assign different weights to these.
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2.9 Document Clustering

Traditional document clustering methods in the field of information retrieval are of at
least three types. The first type of method, which Salton and Wong [106] refer to as a
hierarchical grouping method, constructs a complete n by n similarity matrix for the
n documents to be clustered, and then uses this matrix to construct the categories,
by grouping together first the most similar documents. This is of complexity n?, at
a minimum, and is impractical for large collections of documents, such as we find
on the Web. In the second type of method, which Salton and Wong refer to as
iterative partitioning methods, a fixed number of clusters is set up initially, and then
the remaining documents are assigned in turn to the cluster whose centroid to which
each document is most similar. The centroid represents the “average document” of a
set of documents (here, a cluster); that is, it is the average of all the term vectors in
the set. Unlike a real document, the centroid can (and virtually always does) have
fractional values for some of terms in the term vector representing it.

Chapter 6 is devoted to clustering Web pages, and presents three different tech-
niques; see the chapter for details.

The initial clusters may be the result of manual classification (in the context of
the Web, categories that are selected by a directory such as Yahoo! may be used,
or sites that are highly referenced by hyper-links from other sites may be used with
the idea that each of these reflects a particular topic), or regions of high density in
the term-document space may be used. The number of clusters may be permitted to
change during the course of the algorithm, by merging or splitting clusters. A hybrid

method may be constructed by using a random sample of documents and clustering
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them according to the more expensive hierarchical grouping method, and then adding
the remaining documents to the clusters so found by an iterative method.

In the third type of algorithm, which Salton and Wong refer to as a single-pass
method, because it only involves a single pass through the data, a tree is used in which
clusters are grouped together as one ascends to the root. The algorithm considers each
document in turn and use the tree to place the document in the appropriate cluster
(the one it is most similar up to that point). Such algorithms are of complexity
nlog(n), since the tree height is proportional to log(n), and typically the height of
the tree is navigated in placing the document in the appropriate cluster. The tree is
constructed by first constructing the root node and then creating daughter nodes as
each node gets too large and needs to be split. A review of hierarchical methods for
document clustering can be found in Willett [125].

We review some methods for clustering that have been developed since Salton and

Wong’s early (1978) review in the next few sections.

2.9.1 Suffix Tree Phrase Clustering

Document clustering can be useful in organizing the often chaotic results of search
engines. However, as Zamir and Etzioni [130] point out, if document clustering is
to be used in a practical search engine, the algorithm must work quickly, because
users expect fast results and the CPU cycles that can be devoted to any particular
query are limited, since typical search engines receive millions of queries a day. (The
alternative is to cluster all the pages that the search engine knows about continu-
ously, and then present all the outputs of a query in a clustered fashion, but even

in that case, performance is a serious issue, given the large number of documents to
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be clustered.) The best document clustering algorithms are O(NN) where N is the
number of documents returned by the query. O(N log(N)) algorithms are likely to
be acceptable, but O(N?) or worse algorithms will not be, given the large number of
documents often returned by a query.

Zamir and Etzioni note the following requirements for a clustering algorithm: it
should separate documents into those relevant to a user’s query and those that are
not, it should produce summaries of each cluster which convey to the user what that
cluster is about, it should permit the assignment of pages to more than one cluster
(because pages have multiple topics), it should cluster based only on the snippets of
the documents returned by the search engine (because users are unwilling to wait for
the search engine to get the original documents off the Web), it should be fast, and
it should be incremental, processing each snippet as it is received. To meet these
requirements, they devised an algorithm, which they called Suffix Tree Clustering
(STC), which is O(N).

STC is based on identifying common phrases in documents, and then clustering
together those documents that contain common phrases. Since it uses phrases, not
individual words, for clustering, it differs from most traditional clustering algorithms
that use a document term vector based on individual words that pays no attention
to the relative location of the words in the document. STC is based on the idea that
phrases will do a better job in clustering documents than single words or combinations
of words. The idea is plausible.

To introduce the concept of a suffix tree, I define “suffix” and “trie.” A suffix of a
sequence of words is a sub-sequence of those words up to and including the last word.

The null sequence is not a suffix, in the definition used here. So, for instance, the
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suffixes of the phrase “jack dropped the ball” are the whole phrase itself, “dropped the
ball,” “the ball,” and “ball.” In the suffix tree, these suffixes are represented by paths
from root to leaf. A trie is a type of tree in which the nodes are empty and the data
is stored on the edges between nodes; it has been used to implement algorithms such
as Huffman coding [59], and frequently in information retrieval. Tries are compact
representations that compress data.

A suffix tree [123] is a rooted, directed tree; specifically, it is a compact trie
containing all the suffixes of a particular sequence of words. Each internal node has 2
or more children, and every edge is labeled with a sub-sequence of a given sequence of
words S. They define the “label” of a node as the concatenation of the edge-labels of
each edge from the root to that node. No two edges toward the children of an internal
node in a suffix tree can have edge-labels that begin with same word. For each suffix
of S, there exists a node, which they call the suffix-node, whose label is that suffix.
(They use each sentence of each document in their collection of Web pages for their
sequences S.) Note that suffixes are of lengths up to one less than the length of each
sentence.

A suffix tree for the phrases “jack dropped the ball” and “jack dropped a penny”
is shown in Figure 2.1.

A base cluster is defined as a set of documents containing a common phrase.
The leaf nodes of the trie represent phrases and are labeled with their corresponding
base clusters. Zamir and Etzioni assign scores to base clusters. The score of a given
cluster is a function of the number of documents in that cluster and the length of
the associated phrase, not including words on the stop list. Phrases of length 1 are

penalized; there is a linear relation between the length and score for phrases of length
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Figure 2.1: A Suffix Tree for the Phrases “Jack dropped the ball” and “Jack dropped
a penny”

2-6, and beyond that, a constant multiplier is used.

Zamir and Etzioni note that there may be a large degree of overlap in phrases
between documents. They deal with this by merging base clusters that contain similar
sets of documents. They use a binary similarity measure, where two base clusters are
considered to be similar if half of the phrases that are in one are also in the other. If
two base clusters are similar, they are merged. This creates a new set of base clusters,
with multiple phrases associated with each base cluster.

In practice, this is used to do an on-the-fly clustering of search engine results. They
build these base clusters for a particular set of documents returned. They select the
base clusters containing the largest numbers of documents. For each of these, they
output the set of associated documents along with the set of associated phrases.

They attempt to compare their algorithm with other clustering algorithms. Be-
cause clustering algorithms are unsupervised, there is not really a good way to do this.
They attempt to overcome this by setting up a set of categories manually for a set
of pages and see how well a variety of algorithms do on placing documents correctly

(as defined by their own manual classification of pages in this set) in these categories
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(clusters) (i.e., a precision metric). They find that their algorithm outperforms a wide
variety of standard clustering algorithms. These include agglomerative hierarchical
clustering [120], the K-means method [99], the single pass method [51], “Buckshot”
[26], and “Fractionation” [26]. Of course, they are subject to the criticism that their

evaluation method may be far from unbiased.

2.9.2 Neural Network Methods for Text Clustering

Neural network methods [50] can also be used for clustering, but because of the
number of training epochs that are needed to for a neural network to converge to
a stable value, are considerably more computationally expensive than the methods
given above. For instance, if one has n documents that one plans to cluster into
log(n) classes, and there are f features per document, a typical neural network ar-
chitecture connects a unit representing each of the f features to a unit representing
each of the log(n) clusters. A single weight-update pass through the data therefore
involves a minimum of n f log(n) steps, and one typically needs to make many passes
in order to complete a gradient descent. However, once the training is accomplished,
the algorithm typically works rapidly, so training times can be amortized over the
entire period of the use of the algorithm-training may be well worth it if you only
need to retrain infrequently. Thus researchers that have been involved in using neu-
ral networks for clustering or classification have focused on reducing the number of
features f that are used in grouping.

One of the best known ways of doing this is Latent Semantic Indexing (LSI) |29, 7],
which applies the singular-value transformation (SVT) to the term-document matrix

that characterizes a particular set of documents. (The SVT and its computation are
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discussed in [92]| and [42]). The SVT returns (as one of its results) a diagonal matrix
that has decreasing positive numbers on its diagonal, which are decreasing in size as
one moves down the diagonal from upper left to lower right. One can approximate
the original data by keeping only the larger of these singular values. This amounts
to projecting the original vector space, in which the document vectors appear, onto
a hyper-plane within that space (a lower dimension space).

The hyper-plane is selected by minimizing the sum-squared distance from the orig-
inal points to their projections; thus maximal variability within the data is preserved.
The dimensions of the new space are linear combinations of the original dimensions.
These new dimensions are often thought as “conceptual” dimensions, because they
tend to combine terms that tend to appear together. LSI’s developers claim that
these new dimensions more accurately reflect the underlying semantic structure of
the document while ignoring variability between documents in the use of particular
terms. Documents that are close to one another in the new space can be clustered
together to form a category.

Principal component analysis (sometimes called factor analysis) and the Karhunen-
Loéve transformation are mathematically equivalent to the SVT. A problem with LSI
and the SVT is that the document-term matrix tends to be very large, because there
are typically many terms (there can be as many as appear in the dictionary!) and
the cost of computing it is directly proportional to the size of the matrix. This may
make it difficult to compute in real-time, if it is needed to produce the output of a
search engine. However, once the LSI has been performed, it can be used to re-code
all the documents at lower dimensionality, which, for instance, is useful for input to

a neural network model for further clustering and classification, since many neural
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networks do not scale well to high dimensions. Thus it is necessary to reduce the
dimensionality of the representation of the document vector before inputting it to a
neural network model.

There are also other techniques used by researchers to reduce dimensionality.
Often, they focus on finding the most discriminating terms in the documents.

For instance, Weigend, Wiener, and Pederson [122] use the chi-square statistic to
find such documents. This statistic computes the (normalized) sum-squared differ-
ence between the expected occurrence rate of a term in each of a set of documents and
the actual occurrence rate. Both low and high occurrence rates can be discriminating.
Weigend et al. use this statistic to determine which terms are most discriminating for
subsets of documents assigned to a particular topic. It is also common to eliminate
very high-frequency words, such as “the,” because these are not likely to be useful
in discriminating between documents. It is also common to eliminate very-low fre-
quency words, because it not possible to gather good statistics on their appearance
in documents.

In their work in text clustering, Sahami, Yusufali, and Baldonado [104] eliminate
very high and very low-frequency words, and also eliminate a set of Web-specific
words, such as “html” and “web,” before they do their clustering. Sahami, Hearst,
and Saund [103] eliminate terms that occur in very few or very many of the documents
of their corpus by using a Zipf’s law curve to eliminate low-frequency terms by fitting
such a curve to the actual term frequency of a document and eliminating terms that
occur after the curve falls off sharply. This has the advantage, they point out, of
producing higher cutoffs for longer documents. Another approach taken to reducing

the number of terms applies ideas used in the construction of decision trees in machine
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learning. Here, the terms that are most useful in separating out a particular topic are
those terms that are best at discriminating that topic from the rest, those that are, in
the lingo of decision trees, the most information content. Pazzani, Muramatsu, and
Billsus [87| take this approach.

The HAL (Hyperspace Analogue to Language) model, developed by Lund and
Burgess [17], computes, unlike the LSI model, a co-occurrence matrix between terms,
that is, a term v. term matrix (LSI computes a term v. document matrix). The
HAL model computes this matrix by using a sliding window that moves across a text.
A typical window size is nine. The word that is in the center of the window is the
term that has its components incremented. So, for instance, if the text contains the
sentence “the quick brown fox jumped over the lazy dog,” and the sliding window was
centered on “jumped,” the component for (jumped, over) would be incremented by
4, the one for (jumped, the) by 3, the one for (jumped, lazy) by 2, and the one for
(jumped, dog) by 1. This is done similarly in the other direction: (jumped, fox) is
incremented by 4, (jumped, brown) by 3, (jumped, quick) by 2, and (jumped, the)
by 1.

HAL’s architects reduce the dimensionality of the distances between terms im-
plied by their matrix (that is, the matrix values are interpreted as distances), using
multidimensional scaling. One application of doing so can be for clustering. This
clustering (onto a plane) has demonstrated that words that people judge as being
similar are in fact closely grouped on this plane. Such clusterings could also be used

to separate out search engine results, although HAL’s architects have not done so.
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2.9.3 The Multiple Cause Mixture Model for Document

Clustering

One neural network model for clustering is Saund’s Multiple Cause Mixture Model
[103, 109]. This model is akin to a competitive learning model (e.g. [100]). Saund
takes a causal view of document semantics, in which the underlying topic of each
document is seen as causing the terms that appear in each document. Documents
may have multiple topics and therefore have various mixes of terms resulting in the

> Saund claims that his

terms observed, hence the name “Multiple Cause Mixture.’
model is different because of its many-to-many assignment of terms to topics, but
this is not unique to his model, but exists in various versions of earlier approaches to
document clustering, such those reviewed by Salton and Wong. Assignment of docu-
ments to multiple clusters or topics is typically a parameter of hierarchical grouping
and iterative partitioning algorithms. However, Saund’s model, although it has a sim-
ilar architecture to many competitive learning models, is different from those models,
in that in those models typically only one of the output units responds to a given
stimulus, and they typically inhibit one another.

Also, the direction of the flow of activation in Saund’s model is reversed; his
formalism involves a vector m of “beliefs or activities” connected to a vector r of
data value predictions by a matrix of weights ¢, as shown in Figure 2.2. All of
the values in these variables fall between zero and one. The r vector is computed

” which is a fuzzy

from the m vector and the ¢ matrix by using a “soft disjunction,
version of the logical OR function, also called the Noisy Or [88|, designed to handle

values between zero and one. This function was selected from among many possible
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candidates because it captures the idea that the presence of more than one topic
(which here is a “cause”) should only increase the propensity of a word related to
each of those topics to appear. The causes are in the vector m, which represent the
clusters; the results or predictions are in 7, which is a term vector representing a
document. The vector r represents the probabilities that individual words appear in
a document, given particular cluster membership by having a single node active in
m. The connections between a particular node in m and the vector r represent the

cluster centroid; an “average” document in that cluster.

Figure 2.2: The Architecture of the Multiple Cause Mixture Model

Clusters (m )

Weights ¢

Predicted Data (r)

The accuracy of the prediction vector r can be computed with a log likelihood
function G involving r and the actual binary document vector d. The model is trained
by doing gradient ascent to maximize GG, which is the corpus-wide sum of the g value
for each document. One node is added at the level of the m vector at time, starting
with a random cluster centroid. After the first node is trained to a local maximum,
it is split into two, and gradient ascent is continued until another local maximum
is achieved. The algorithm stops when there ceases to be additional goodness-of-fit
associated with additional cluster nodes. The gradient ascent is similar to the gradient

descent used in back-propagation [101]; otherwise, the algorithm differs from back-
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propagation in a number of ways.

Since this is a neural network algorithm that uses gradiant ascent, it runs slowly,
and is very sensitive to dimensionality. The authors used an approach drawing on
Zipt’s Law to eliminate some terms from the term vector representing a document
and therefore reduce the dimensionality.

This algorithm is essentially unsupervised in nature (that is, it is a clustering
algorithm), but it can be modified to be a supervised algorithm, which turns it into
a text-classification algorithm rather than a text-clustering one. To do this, one
performs a clustering, and then one associates each cluster manually with a class.
Their experiments found that the algorithm performed respectively on classification
tasks, but not as well as Naive Bayes. On a clustering task, it is more difficult to
gauge performance; however, the authors do attempt to justify the clusters that the

system formed on the basis of a particular test set.

2.9.4 Concept Indexing

Karypis and Han [56] propose a novel technique, that they call concept indexing,
for dimensionality reduction in document retrieval. I mention it in this context (of
clustering) because they use clustering to create new dimensions onto which they
project the original documents. They use a version of a partitional clustering algo-
rithm |1, 27, 65, 20| to create the initial £ clusters that they cluster their document
set into. The authors point out that partitional clustering algorithms have become
popular in recent years because they have near-linear run-times, which are important
in order to deal with very large document collections. In a direct partitional clustering

algorithm, £ documents are randomly selected as the seeds of clusters.
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The remainder of the documents are then assigned to the cluster of the seed to
which they are the most similar. The cluster centroid of each cluster is then computed.
Then iterations are made through the documents, moving documents when they
are closer to the cluster seed. One stops the clustering either after a fixed (small)
number of iterations or when no document moves. So if the number of iterations is
n and the number of documents in the collection is m, the time complexity of this
algorithm is O(nkm), where the individual operations performed are document-vector
dot products that are limited in cost by the length of the longest document.

One can measure the quality of a clustering (relative to another one involving the
same documents and the same number of clusters) by using the following metric M:
the sum of the similarities of all of the documents to their respective cluster centroids.
So the random seeding technique can be improved by running it several times with
different sets of seeds and picking the clustering with the highest value of M. Of
course, this “improvement” is purely technical, and may reflect nothing in terms of
the subjective semantic quality of the clustering.

They use a variant of a random-seeded iterative partitioning algorithm to pro-
duce their clusters. After they produce their clusters, they use the cluster centroids
as the axes of a new k-dimensional space by projecting the term vectors of the doc-
uments onto this space. They find that this dimensionality reduction has similar
performance to Latent Semantic Indexing [29] at a much reduced computational cost,
because there is no need to compute the Singular Value Decomposition. They also find
that a concept-indexing-based dimensionality reduction improves the performance of
standard classification algorithms such as C4.5 [93] and k nearest-neighbor (kNN)
[74].
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2.10 Document Classification

There have been a wide variety of techniques developed for the classification of tex-
tual documents. Most of these techniques do not rely on so-called “deep” knowledge
about the domains of the documents in question, which would require true document
and language “understanding” on the part of the machine, but rather rely on the sta-
tistical properties of such documents, mainly the distribution of the words in them.
Nevertheless, researchers have been able to get good results in terms of percentages
of documents correctly classified.

I engage in various experiments in the classification of Web pages in Chapters 3
and 4. See those chapters for more details.

Yang [128] reviews a variety of approaches to text classification, using the widely-
used Reuters corpus of documents, which consists of financial news items from the
Reuters news service. The Reuters corpus exists in several variants. She compared
the CONSTRUE algorithm (an expert system developed by the Carnegie Group), a
decision tree algorithm, a Naive Bayes algorithm, Inductive Rule Learning in Dis-
junctive Normal Form (DNF) (represented by two variants, the RIPPER and the
SWAP-1 algorithm), two neural network algorithms (referred to as NNets.PARC and
CLASSI), the Rocchio algorithm, the Linear Least Squares Fit algorithm, the Sleep-
ing Experts algorithm, the k nearest neighbor algorithm, and the WORD algorithm,
which does simple matching of the document in question with the category names,
as a baseline benchmark of all the other algorithms.

I will briefly discuss some of the better-known of the algorithms Yang compared;

for more details on these and the others, see Yang’s paper and the references therein.
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Decision tree algorithms, such as C4.5, build decision trees to classify examples
based on an information gain metric from information theory. In the text classification
context, where one is deciding if a document is in a category or is not, this means
that the keyword that is best at distinguishing documents that are in a category from
those that are not is used in the decision at the root of the tree.

The Naive Bayes algorithm, which is probably the most widely used text classifi-
cation because of its combination of simplicity and effectiveness, uses the conditional
probabilities of categories given the presence of a particular word, and then estimates
the probability of category membership as the product of these probabilities, assum-
ing that these events are independent (even though they clearly are not). Despite
this simplifying assumption, one finds empirically that this method gives adequate
performance, although, as we will see, Yang finds that it performs worse than several
other techniques.

The neural network algorithms use either a two or three-layer feed forward network
and gradient descent through parameter space [101]. Typically, one output unit is
used for each category. Because these algorithms tend to run slowly, typically some
method is used to reduce the dimension of the examples before the algorithm is run,
such as Latent Semantic Indexing [29].

The k-nearest-neighbor algorithm, kNN, assigns a new example to the category
of which the largest number of its £ nearest neighbors are a member. Neighbors are
typically defined in a Euclidian space with a Euclidian distance metric. Sometimes,
a weighted distance metric is used [79].

Yang found that performance varied depending on the version of the Reuters

database she used, and she did not test all algorithms with all variants. She mea-
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sured performance based on the break-even point of a classifier, which reflects the
classifier’s performance when it has been tuned so its precision and recall are equal.
Excluding the WORD algorithm, which gave poor performance on this metric (0.15
in the case of Reuters version 2 and 0.31 in the case of Reuters version 3), she found
that performance varied from a low of 0.65 for Naive Bayes on Reuters version 2 to a
high of .75 for EXPERTS, and a low of 0.71 for Naive Bayes on Reuters version 3 and
a high of 0.85 for kN N. Thus Yang does not validate the commonly-held assumption
that Naive Bayes is a well-performing algorithm for this problem. Statistical issues
make the comparison of such algorithms a complex problem, though. Yang and Liu
[127] updated Yang’s work with another comparison of a smaller set of classifiers, and
Naive Bayes did not do well in that analysis either. In that work, they found that
Support Vector Machines and Linear Least Squares Fit, along with ANN, performed
better than the neural network algorithms considered or Naive Bayes.

There are other text classifiers not considered by Yang. For instance, Lewis et
al. [70] consider the performance of two classifiers, the Widrow-Hoff (WH) classifier
and the Exponentiated-Gradiant (EG) classifier, and compare them to the well-known
Rocchio algorithm. WH and EG are akin to neural networks, in that they use gradient

descent in a parameter space of weights.
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Chapter 3

Using Links to Improve Classification

Until about 1995, classification of textual documents into categories did not usually
occur in a hyper-linked environment.! (For a comparison of some text classification
techniques, see, for instance, Moulinier [83] or Dumais et al. [32]; also see my review
in section 2.10). Thus, the text in each document was the only information that
could be used to classify that document into two or more predetermined classes.
In the Web environment, there are numerous hyper-links between documents. All
things being equal, it seems reasonable that documents that are thematically related
are more likely to be linked together than ones that are not on the same subject.
Or, conversely (and probably more accurately) a document is likely to have links to
similar documents on it.

We can make use of this fact to improve classification of documents. In fact, it is

possible, as we will see, to improve classification performance based on link structure

!The term “hypertext” was coined by Ted Nelson in 1965, and other systems were hypertext-
based before the Web; notably, Apple’s Hypercard. However, until the advent of the Web, the use of
hypertext systems was not sufficiently widespread to get much attention from the computer science
research community. For Nelson’s recent reflections, see [84].
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alone, as compared to random classification.

3.1 Classifying Wisconsin Policy Documents Using

Link Structure

3.1.1 Hypothesis

My hypothesis was that link structure among a set of classified examples could provide
useful information about how these examples should be classified. The question,
however, is how useful this link structure alone is. To measure this, in one context at

least, is the purpose of this experiment.

3.1.2 Methods

I manually collected 500 documents (Web pages) on various aspects of public policy
relevant to Wisconsin. I used publicly-available search engines, such as Altavista,
Google, and Alltheweb to do this. One hundred documents were collected on each
of the following topics (all with respect to Wisconsin): economy, education, the en-
vironment, government and politics, and health. In addition, 100 documents were
collected on random topics, using Yahoo!’s random page retrieval facility, which se-
lects a page from Yahoo!’s hierarchy (pseudo)-randomly. All of the documents that
these 600 documents directly pointed to were also collected from the Web, which
amounted to an additional 11,892 documents. This means that each of these 600
documents had an average of almost 20 links, but of course the number of links were

not evenly distributed, with some pages having no or very few links, and some having
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many. (I also used the 500 classified documents in an experiment reported in Section
5.)

Since there are six categories, if we abandon all information about how they should
be classified (which, of course, we know, since they were manually classified during
my search process), and simply guess at their correct classifications, we will get the
correct classification for one-sixth of the pages. If the sizes of the categories were
different, one would get better performance by always guessing the most frequently
occurring category, but here we have 6 categories with 100 pages each, so random
guessing would work just as well.

I computed all of the 1-hop and 2-hop paths between these pages, ignoring any
self-links (links from a page back to itself; all paths are directed). A 1-hop path is
just a link; a 2-hop path is defined as a two-link path that gets you from the source to
destination pages. Since there are 600 pages, there are 600 % 599 = 359, 400 possible
directed combinations of these pages. However, there were only 46 1-hop paths and
215 2-hop paths found among these pages. So, this part of the Web is very sparse. As
a percentage of the number of pages, the one-hop paths represent (46/600) or about
0.076 in-links per page, and the two-hop in-links represent (215/600) or about 0.358
in-links per page.

For each of the 600 pages in the original set, we can consider what the link
information tells us about what classification they should have. Of course, in this
case, we already know this information, but the algorithm that I describe below can
also be used on pages that are not in the original set of pages, such as pages close to
them in the graph that is the Web.

The following simple algorithm can be used. For each page and for each category,
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Figure 3.1: Voting Algorithm for Classification of Pages by Direct and Indirect In-
coming and Outgoing Links

1. For each page p:

(a) For each category c:

i. compute number of pages 1y 15 in ¢ which directly point to p.
ii. compute number of pages nn 2. in ¢ which indirectly point to p (via
another page).
iii. compute number of pages n4yut,1,p, in ¢ to which p directly points.

iv. compute number of pages noyu 2, in ¢ to which p indirectly points
(via another page).

v. Let Np.c,total = Thin,1,p,c + Nin,2,p,c + Nout,1,p,c + Nout,2,p,c-

b) Assign p to the category ¢ with the maximal value of n, . otai-
g g PiC,

sum: the number of pages in that category with a 1-hop path to that page, the
number of pages in that category with a 2-hop path to that page, the number of
pages in that category with a 1-hop path from that page, and the number of pages
in that category with a 2-hop page to that page. After computing these statistics
for all pages and categories, classify each page in the category that has the largest
sum.? This algorithm is laid out in detail in Figure 3.1. The algorithm is a variant
of a “leave-one-out” training-test set regime, in which a training set of size k (here,
600) is divided into a training set of size k-1 and a test set of size one; all the other

instances are used to test each instance [79][82].

2Tt would probably be an improvement to give a higher weight to the direct as opposed to the
indirect links in this algorithm, because direct links are both less frequent and probably on average
more meaningful. However, I have not done so here; in order to do so, an appropriate weighting
factor would have to be selected; one possibility would be a ratio computed by finding the number
of direct versus indirect (two-hop) links in a random sample of Web pages.
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3.1.3 Results and Discussion

Table 3.1 is a “confusion matrix” that shows the classification of pages in the original
5 categories into the same 5 categories based on this algorithm. The original category
runs down the vertical axis, and the new category runs across the horizontal axis. The
final column shows the number of pages that are classified at all using this method
(which for all categories is a minority). If a page has no paths in or out of it from
other pages, then it cannot be classified using this method, and due to the sparseness
of the graph, many pages fall into this category. Only the pages that can be classified
in such a manner are showed in this table; however, all pages are accounted for in
the overall classification performance statistics shown in Table 3.2, by assigning pages
that have no information uniformly across categories (since, here, the categories are
of uniform size). However, Table 3.1 is useful in order to see the proportion of pages
for which this algorithm is useful.

Note that the final category (6) consists completely of random pages. Each of
these pages points to no other page of the 600, nor is it pointed to by any of them.
So this classification method does not work at all on these pages; none of them is
classified into any category, and they are omitted from Table 3.1. However, we can see
from this table that except for category 1, more pages in each category are classified
back into that same category using this method, since for categories 2-5, the maximal
values are on the diagonal. Thus, this demonstrates that at least for this data set,
the link information in combination with the category information for nearby pages
can provide additional information as to a page’s classification. Note that since there
are equal numbers of pages in each category in this example, we do not need to

worry about correcting for the (more general) situation where some categories have
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more pages in them than others, and therefore, all things being equal, provide more

out-links.

Table 3.1: Confusion Matrix for Classification of Wisconsin Public Policy Web Pages

Reclassified Category
Original Category |1 | 2 | 3 | 4 5 Totals
1 511 |1 |11 0 18
2 112412 |6 1 34
3 313 123]5 0 34
4 3103 |41 1 48
5 2121019 21 34

This algorithm will only work well if there is some semantic separation between
the categories that is reflected in the link structure. We can see from the table above
that category 4—which is “politics and government”—is intertwined semantically, and
in terms of the link structure, with the other categories. Pages in category 4 are more
entwined with pages in category 1 (“economy”) than category 1 pages are entwined
with other pages in category 1, which is not tremendously surprising given the close
relationship between these two topics. The degree to which this happens will depend
on the underlying semantics of the human classification that is being used.

Table 3.2 shows the percentages of pages classified in each category, assuming that
one-sixth of each of the pages not classified by the method above are assigned to each
category. For categories 1 through 5, the value on the diagonal is greater than it
would be (16.7 percent) with no additional information, since the categories are of

equal size, and if we guess randomly among the six categories.
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Table 3.2: Confusion Matrix, Classification of Wisconsin Policy Documents, Percent-
ages

Reclassified Category
Original Category | 1 2 3 4 5 6
18.7 | 14.7 | 14.7 | 24.7 | 13.7 | 13.7
12.0 | 35.0 | 13.0 | 17.0 | 12.0 | 11.0
14.0 | 14.0 | 34.0 | 16.0 | 11.0 | 8.7
11.7 | 87 | 11.7 | 49.7 | 9.7 | 11.0
13.0 | 13.0 | 11.0 | 20.0 | 32.0 | 16.7
16.7 | 16.7 | 16.7 | 16.7 | 16.7 | 16.7

QO W N| =

3.1.4 Related Work

Others (notably Tom Mitchell and his colleagues, e.g. [11][85][86]) have made use of
link information in Web document classification. However, their main concerns have
been with using the information on the anchor tag (the text on the link) pointing
into a Web page, and on using techniques to bootstrap from a small set of labeled
examples and a larger set of unlabeled examples to successfully classify a larger set
of pages. Here, I am doing something simpler. I have simply demonstrated that the
classification of the immediate and two-hop neighbors of a page in either direction
along the directed graph of the Web can provide us with some useful information
about the classification of that page. This leads up to the result of Section 3.3 that
combining such link information with the textual information on page as analysed by
the Naive Bayes algorithm, we can attain better classification performance than with

either one separately.
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3.2 Link Structure and Classification in a Sample of
Pre-Classified Documents

One of the problems with the exercise described above in Section 3.1 is that I did the
classification of the documents, and it is likely that I am biased. So, as an antidote
to this, I selected part of the tree of pre-classified documents found in the Open
Directory (Dmoz, or “Mozilla Directory”) project site at www.dmoz.org. This is a
site in which a large number of volunteer “editors” classify pages into a hierarchical
taxonomy, like a library’s card catalog, and the results of this classification are made
freely available for browsing and for download (the latter in a huge file).

I selected all the Web pages that the Open Directory editors had put in the cat-
egory “/Science/Biology.” At the time that I downloaded these pages, there were
12,828 pages in this category. Of these, nine of the pages were classified at the root,
and the remaining 12,819 in one of the 32 sub-categories below the root. These
pages were not distributed uniformly in these categories; they ranged from 8,140
pages classified into “/Science/Biology/Taxonomy” to 2 pages classified into “/Sci-
ence/Biology/Associations”.

There were a total of 64,544 links between pages in “/Science/Biology;” however,
61,875 of these links were between pages in “/Science/Biology/Taxonomy;” this left
2,669 links in which at least one of the categories was not
“/Science/Biology /Taxonomy.” Considering all links, this is 65, 544/12, 828 or about
5.1 in-links per page; considering just the links not in the taxonomy clique, this is
2669/12,819 or 0.2 in-links per page. The Wisconsin Policy collection had about

0.08 in-links per page, which is on approximately the same order of magnitude as
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the latter (0.2) figure. The Web has many sets of pages that have been manually
constructed with large cliques; in fact, both Yahoo! and Dmoz contain such cliques.
Since different samples of pages may vary significantly on this dimension, this may
significantly affect the average number of in-links found in any particular sample.

I constructed a 32-by-32 array representing the links, where the vertical axis was
the category of the source page and the horizontal axis was the category of the
destination page. The value in each array cell is the number of links falling into that
cell. This array is shown in Figure 3.2.

If a page in a given category was more likely to point to other pages in that
category than to pages in other categories, than one would expect the diagonal values
in this array to be maximal; that is, to be greater than all of the other values in each
diagonal value’s column. This is the fact the case for 19 of the 32 categories in the
figure. Of course, if the maximal values were randomly distributed in each column,
very few of them would be on the diagonal. Thus, the fact that most of them are on
the diagonal is good evidence that links coming from pages that have already been
manually classified can provide good information about the category membership of

the pages to which they point.
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Figure 3.2: Counts of Linkages Between Categories in the Dmoz “/Science/Biology”

Subtree

32

29 30 31
0

2 34 5 67 8 9101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1
10 0 00 0 0O0 0 OOOOOOOOOOOOOOOOOOODODO

0

1122 0 0 2 4 014 0 1

3011120 0 00 0 0 0 2 0 O 0 015 0 O

2063 70 210013 0 4 6 0 2

0
0

0
0

12 08 000 200

0 000OOOOOOOOOOOOTU OO

1

1

10 0 0 O
41
176 0

1
10 3 00 M

0
50 0 0021

40 2 01
60 4 00
70 0 00

0

1

4 05000202000

1

0 0 3 1

1

1
00 0 0O OOOOOOOOOOOOOOOOOODO

2

82 0 O
0
0
0
0

1

15 0 0400010 40O0O0O0O0TGO

1

0

0
0
2
0

06 400207 0O0O0S5U040HO0O0O0O0°O0

1

90 0 00 0 OO O74 0 0 0 0O OO OOOOOOU OO

80

0 0 0O

1

002 0002 O0O0O0TO0

0 019 1
1

1

0 2 2 410

100 2 00 0 00 2 0 7 4 O

4 03 010300

1

1

0 4 00

3 30 1

1

1
120 0 00 0 90 0 O

110 3

13

0 1

1

0 7 0 0O

099 1 0 0 1 0 0 O

1
1

00 3 0 0 2 O

1

160 6 3018 50 3 0 6 2 O

1

5000005020200
0

1

8 0000 3 2020

2 3 90

130 0 00 0 30 0 O

0 0 0O 0

1
1

1

3 0 21524 0 0 5

1

140 2 00
15 0 16 12 0 13

0 8 O

1

5 0 5 1

1

0

163 0 0 0 4 06 0 3 01

0

1
170 0 00 0 0O O O O O OO OOOOU OU OU OO OO OO OOOOO OO

0
0

0
0
0
0

180 0 00 0 OO O O O OO OOOOTOOOOOOOOOOODO

100 0 30
0 00503 00O0O0O0TGO0

2 0 3 0 017 3 0 6

1.0 0 1
10 7 0 0 2

00

190 0 00 2 20 0 O

0

0 0 0 1

1

0 00O0OOOOOOOOOOOOTOTO

00 O

200 11

0

1

1 1

220 2 20 0 20 2 0 2 O

210 0 00

0

5

1

0

2 00 200

6 0 0 3 2 061

2 21
1

1

0

100 0 0 O OOO
0 0 00O

0 00 O0OO O

00 0 20 0 0 0 1
00 00 0 0 0OOOOOTO

1
1

250 0 00 0 00 0 O

23 0

0 3 0O0O0O 0

1

1

1

24 0

0 0

1
0 00 O0 OGP O

0 00O0OOOOOOOOOOODO

1

1

10 0 0 O

0
0
0

0
0
0

1

0

10 0 0 1

0 0 0O

10 0
270 0 00 0O OO O O OOOOOOOOOOOOOOOOOTGODO

260 2

0 00OOTOOO OO OO OO OTO0OTS®

0 0 1
102 00O0O0O0O0O 31 0 0 0 0 061875 0 0

1

0 0 029

280 0 00 0 00 O O O O

43

1

10 0570

1

300 0 00 0 O0OOOOOOOOZ2O0O0O0O0OO0OOOOOOOTGOOQ

29 0

0

0 00O0OOTOOOZ2W0DOo0 0

1

0 00 O0O0OO0OTO 0OTO

30 0 00 0 01

56 0 0 1089

11

0

2 010405001

1

4

1

10 0 0 0 314

1 10 0

32 1



67

3.3 Extending Naive Bayes to Use Hyper-link

Information

3.3.1 Hypothesis

The hypothesis explored in this section is that combining textual and link information

can do a better job of classifying Web pages than either one alone.

3.3.2 Methods

I explore six different algorithms and compare their performance; they all incorporate

both textual and link information, except for text-based Naive Bayes, which I include

as a baseline by which all the others are measured. They are described as follows.
One commonly-used and effective way to classify text uses the Naive Bayes method,

given by the following formula:?

nbscorer(d;,v;) = P(vy) [ P(wg | vy)

keWw

where v; is one of the set of possible classifications (v1,...,v,) and the wj are the
words drawn from the word positions W found in document d; of the set of documents
being classified. P(v;) is the overall probability of category v;. P(wy | v;) is the prob-
ability that wy, is in the document, given that the document is in category v;. These
probabilities are estimated from a training set of documents, and then documents
in a test set are classified. The subscript 7" stands for “text.” The document d; is

classified in the category v; that has the highest value for nbscorer(d;, v;). For the

3This formula was taken with slight notational, but not substantive, changes from Mitchell [79].
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Figure 3.3: The Naive Bayes (NB) Algorithm, as Applied to Text Classification

1. Divide the sample into a training set and a test set.

2. Let W be the set of words wy found in any document in the training set. Let n
be the total number of word positions in all the documents of the training set
concatenated together. Let n,, be the total number of times word wy appears
in the training set in all documents classified in category v;. Then let

Ny, + 1

P(Wk‘vj)zm

3. For each document d; in the test set and all w,, in W in that document:

(a) For each category v; in the set of possible classifications let

nbscorer(d;, v;) = P(v;) [[ P(ws | v))
keW

(b) Assign d; to the category v; with the highest value of nbscorer(d;, v;).

purpose of this discussion, let us refer to this algorithm as NB; this is the ordinary
Naive Bayes text classification algorithm widely used in the literature. A pseudocode
version of this algorithm is given in Figure 3.3.

In an environment, such as the Web, where there are directed links between doc-
uments, it is reasonable to believe that if a document links to and is linked to from
other pages known to be in a particular category, that it is more likely to be in
this category, all other things being equal. It is a straightforward matter to extend
Naive Bayes to make use of such link information. We simply add more conditional

probabilities to the formula. Now we have

nbscorery (di, v;) = P(v;) [T P(wk [ v;) [T Plaiw, | v;) IT P(biv, | v5)
kew leC leC



69

where the subscript T'L signifies “text and links,” a;,, is the number of in-links to
document d; from pages in category v;, b;,, is the number of out-links from document
d; to pages in category v;, and C is is the set of categories in which documents are
being classified. P(a;, | v;) is the probability that the document has a;,, in-links from
category vy, given that the document is in category v;. P(bi, | v;) is a similar term
with respect to the number of out-links. Note that these additional conditional prob-
abilities are estimated using the training set, as are the word occurrence conditional
probabilities. Let us refer to this algorithm as NB-Text-And-Links. A pseudocode
version of this algorithm is shown in Figure 3.4.

Another way to extend Naive Bayes is to use additional “bags of words” [22]. For
instance, if we consider a set of pages in a particular category that have been divided
into a training set and test set, we can consider the first bag for a given example
(page) to be all the terms drawn from the text on that page, and the second bag
to be all the words drawn from pages that are in the training set and point to or
are pointed to by the page that is the example. (In my experiments, I use pages
that are one or two hops away. My algorithm varies a bit from that used in [22],
in that the authors in that paper use three bags, one for the text of the example,
one for inlinks, and one for outlinks, and they only use direct links, while I use 1 or
2-hop connections.) Each of these bags can be considered separately, forming its own
product with respect to each of the categories v; above. The same term appears twice
if it appears in both bags, and each instance is considered different for the purposes
of the algorithm. The scores for the two bags can be multiplied together and the
result used as the final product for classification of a test example. Let us refer to

this algorithm as NB-2bags. It is described in pseudocode in Figure 3.5.
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Figure 3.4: Algorithm NB-Text-And-Links: Integrates Textual and Link Information
to Classify Pages

1.

2.

Divide the sample into a training set and a test set.

Estimate the probabilities P(wy | v;), the chances of the presence of word wy,
given that the document in question is in category v;, using word frequencies
in the training set as in the Naive Bayes algorithm: see Figure 3.3.

Let P(a;, | vj) is the probability that a document d; has a;,, in-links from
category v;, given that the document is in category v;, and P(b;, | v;) is a
similar term with respect to the number of out-links. P(a;, | v;) and P (b, | v;)
are estimated using by counting links within the training set.

For each document d; in the set of documents in the test set:

(a) For each category v; in the set of categories C:
i. For each category v; in the set of categories C let

nbscorery,(di, v;) = P(v;) [T P(wk | v;) IT Plaiw, | v;) IT P b, | v5)

kew leC leC

where the subscript 7'L indicates “text and links,” where wy, is a word
in the set of words W found in the document.

(b) Assign d; to the category v; with the highest value of nbscorerz(d;,v;).
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Figure 3.5: Two-bag Version of Naive Bayes (NB-2bags)

1. Divide the sample into a training set and a test set.

2. Let W be the set of words wy, found in any document in the training set. Let
n be the total number of word positions in all the documents of the training
set concatenated together. Let n,, ,; be the total number of times word wy
appears in the training set in all documents classified in category v;. Then let,
for all v,

Napgw; T 1

Pl(wk\vj):m

3. For each document d; in the training set, construct a new document d; peighbors
which consists of all the neighbors of d; one-hop or two-hops away in either
direction, concantenated together. Redefine n as the total number of word
positions in the d;neighsors concatenated together (this will reuse documents).
Redefine n,,,, as the total number of times word wy appears in d; neighbors for
all documents d; classified in category v;. Then let, for all v;,

Nagyv; + 1

Py(wy, | Uj) = W

4. For each document d; in the test set and all w; in W in that document and all
wy in d; neighbors corresponding to d; (as in step 3 above, and using only neighbors
in the training set):

(a) For each category v; in the set of possible classifications let

nbscorer(d;, vj) = P(v;) H Py (wy | v)) H Py(w; | vj)

kew lew

b) Assign d; to the category v; with the highest value of nbscorer(d;, v;).
j j
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Figure 3.6: Algorithm Simple-Link-Voting: Classifies Pages on Basis of Link Infor-
mation Only

1. Divide the sample into a training set and a test set.

2. For each document d; in the test set:

(a) For each category vj, let n,, be equal to the total number of direct (one-
hop) and indirect (two-hop) in-links and out-links from pages in the train-
ing set that have been classified in category v,

(b) Assign d; to the category v; with the highest value of n,,.

Let us also consider a simple algorithm based only on links, as a baseline, and to see
whether link information alone can provide significant information for classification.
Simply, for each page, find the category for which there are the most number of pages
in the training set in that category pointing to that page or which that page points
to (through 1 or 2 hops), and select this category as the category in which to classify
the page. Let us refer to this algorithm as Simple-Link-Voting, since we can think of
the links as “votes.” This algorithm is shown in pseudocode in Figure 3.6.

Let us also consider a couple of variants on the above. Algorithm Voting- Trumps-
NB allows the selection of Simple-Link-Voting for the category membership of a page
to trump (that is, have its value supersede that of) NB, unless the former provides
no category with any “votes” (which often happens due to the sparse nature of the
connectivity matrix). The pseudocode for Voting-Trumps-NB is shown in Figure3.7.

Algorithm Voting-NB-Combined lists the top three category choices of Simple-
Link-Voting and NB and sums the ranks for each category, picking the category in
the list with the lowest summed rank as a way of combining the two rank order lists.

If a category appears on only one of the lists, its score is doubled for comparability.
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Figure 3.7: Algorithm Voting-Trumps-NB

1. Divide the sample into a training set and a test set.

2. For each document d; in the test set:

(a) Assign d; to the category given by Simple-Link-Voting (see Figure 3.6),
unless Simple-Link-Voting offers no category assignment, in which case
assign d; to the category given by Naive Bayes (see Figure 3.3).

It is shown as pseudocode in Figure 3.8.

Algorithm NB-with-Neighbors applies Naive Bayes to the page to the page to be
classified and to all the pages to which it points (retrieving these neighbors from the
Web if necessary; that is, if they are not already in the test or training sets). It
then counts “votes” from all these pages and the page itself, assigning the page to
the category that receives the most votes. This algorithm is shown in pseudocode in
Figure 3.9.

For the purposes of comparing the above algorithms, I selected pages from the
“/Science/Physics” and “/Science/Chemistry” categories of Dmoz. In the former set,
there were 1,782 pages, and in the latter set, 1,379.% The chemistry pages were divided
by Dmoz into 24 categories, and the physics pages into 27 categories. Classification
into these categories was the task for the above algorithms. Random classification
would lead to low classification performance. In the case of physics, if you assume
equal classification probability for each of the 27 categories, you get 1/27 = 3.7 percent

classified correctly; if you always guess the most frequently-occurring category, you

4 Actually, these numbers were 1,899 and 1,472 originally, in terms of the list of URLs cataloged
in Dmoz but a fraction—between 6 and 7 percent of the pages in each case—could not be retrieved
from the web, due to the fact that pages tend to disappear from the web after Dmoz catalogs them,
or are unavailable due to server or network down time.
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Figure 3.8: Algorithm Voting-NB-Combined

1. Divide the sample into a training set and a test set.

2. For each document d; in the test set:
(a) Find the categories vy1, v12, and v;3 with the three highest values of Ty,
for d; (in order) as given by Simple-Link Voting (see Figure 3.6).

(b) Find the categories wvy1, v9g, and wvo3 with the three highest values of
nbscorer(d;,v;) (in order) as given by NB (see Figure 3.3). Note that
some of these may be equal to the categories in (a).

(c) Let the rank of v;in (a) and (b) above be k.
(d) For each unique category v in the (up to) six listed above in (a) and (b):

i. Sum its ranks £ to form S, If v appears in only one list, add that rank
into the sum twice, for comparability.

(e) Assign d;to the category v with the lowest summed rank S,,.

Figure 3.9: Algorithm NB-with-Neighbors

1. Divide the sample into a training set and a test set.
2. Define P(wy | v;) as in Naive Bayes using the training set (see Figure 3.3).

3. For each document d; in the test set, find all of the pages d; to which it points.
(a) Form the union of d; and all the d;. Call this D. Initialize count(v) to zero
for all categories v. For each dj in D:

i. Find the category v that it would be assigned by the Naive Bayes
algorithm (see Figure 3.3). Increment count(v) by one.

(b) Assign d; to the category v with the maximal value of count(v).
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get 14.1 percent. For chemistry, these numbers are 1/24 = 4.2 percent and 30.3
percent. The numbers for guessing the most frequent category provide a baseline for
the classification performance of all the other algorithms.

Each of the chemistry and physics sets were separated randomly into 10 equal-
size “folds” for k-fold cross-validation [79], with k=10.°> In this technique, which is
commonly used, each fold becomes the test set in one iteration of each algorithm,
and the union of the other 9 folds becomes the training set. The mean performance
across the 10 test sets is used to access the performance of a particular algorithm, in
order to get a better estimate of the true performance of the algorithm. In addition,
a paired t-test can be used to statistically compare two algorithms, by pairing up the
performance statistics of the two algorithms on each particular fold. Twenty data

points are used for each of these paired t-tests, 10 pairs of two each.

3.3.3 Results

The mean performance of all the algorithms described above on these two data sets is
given in Table 3.3. Also shown is the difference in this mean performance from that

of Naive Bayes and the significance of this difference as measured by a two-sided ¢

5 All statistical methods for accessing the differences in the performance of learning algorithms
are prone to some Type I error. Type I error occurs, in this case, when such a method incorrectly
reports a difference between two learning algorithms’ performance as being statistically significant.
Dietterich [30] compares approximate statistical techniques for use when comparing machine learning
classification algorithms. He finds that 10-fold cross-validation, compared to some other statistical
techniques, has “somewhat elevated” probability of Type I error (on real-world data, this amounts
to a probability of between five and ten percent, depending on the data set in question); however, it
is also the most powerful in its ability to detect differences between algorithms when they do exist.
In cases when the algorithms can be run more than once, as is the case with the algorithms that I
discuss in this section, he recommends the use of another statistical technique, which not as powerful
as k-fold cross-validation, but has a lower probability of Type I error (around four or five percent in
his tests). This latter technique is 5x2 cross-validation, in which cross-validation is run five times,
each with two equal-sized, randomly-selected folds.



76

test and its corresponding p value, which is the probability that this difference could

have occurred. Here, there are 9 degrees of freedom.

Table 3.3: Mean Performance Across Ten Folds for Chemistry and Physics Data Sets
and Significance of Difference from Naive Bayes as Measured by a Paired Two-Sided

t Test
Chemistry Data Set, 10-fold Cross-Validation

Algorithm Mean test set perf., folds | Diff. from NB | t value | p value
NB 0.450 0 N.A. N.A.
NB-Tezxt-and-Links 0.472 0.022 7.043 0.000
NB-2bags 0.443 -0.006 -0.624 | 0.548
Voting-NB-Combined 0.459 0.009 1.159 0.276
Voting- Trumps-NB 0.558 0.108 6.152 0.000
Simple-Link- Voting 0.409 -0.041 -1.628 | 0.138
NB-with-Neighbors 0.393 -0.056 -3.529 | 0.006

Physics Data Set, 10-fold Cross Validation

Algorithm Mean test set perf., folds | Diff. from NB | t value | p value
NB 0.409 0 N.A. N.A.
NB-Tezxt-and-Links 0.424 0.015 2.907 | 0.017
NB-2bags 0.404 -0.005 -0.488 | 0.637
Voting-NB-Combined 0.481 0.072 5.239 0.001
Voting- Trumps-NB 0.573 0.164 7.5975 0.000
Simple-Link-Voting 0.515 0.106 4.233 0.002
NB-unth-Neighbors 0.305 -0.104 -9.379 | 0.000

3.3.4 Discussion

The first thing to notice about Table 3.3 is that all of the test set classification per-

centages are considerably higher than would be expected by chance, and all are higher

than what would be expected by simply guessing the most frequently-occurring cat-
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egory, which is a good thing (but not surprising, since we know that NB performs
much better than chance in general). This is a relatively difficult task for the clas-
sifiers due to the large number of possible classes, so the test set performances are
relatively low. Simple-Link-Voting, a very simple algorithm, gives valid classification
information over and above that which one would obtain at random, and does quite a
good job in the case of the physics pages. Voting-Trumps-NB performs best; 16 points
better than NB for the physics pages and 11 points better for the chemistry pages.
In addition, these differences are very highly significant, with p values approaching
Zero.

For the chemistry pages, NB-Text-and-Links and Voting-Trumps-NB are the only
algorithms that performs significantly better than NB; NB-with-Neighbors performs
significantly worse. The rest have no significant differences from NB, as measured by
the p value. For the physics pages, three of the algorithms (Voting-NB-Combined,
Voting-Trumps-NB, and Simple-Link-Voting) perform significantly better than NB;
NB-with-Neighbors performs significantly worse. All of these differences are highly
significant as measured by the p value.

Thus, of all of these variants, Voting-Trumps-NB and NB-Text-and-Links are
the only ones that give a consistent significant improvement over NB, and Voting-
Trumps-NB gives performance that is much better. This would seem to indicate that
the best approach is that when you have significant in-link or out-link information
that indicates a particular category, than use that information in preference to that
provided by the (text-based) NB; if you are (as you often are, given sparse networks)
lacking such information, use the NB information. Of course, the amount of such

information that you have is roughly proportional to the size of your training set,
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assuming a fixed average number of in-links per page. So, very little additional
information is obtained with small labeled sets, and improvement should be better
with bigger labeled sets.

Chakrabarti, Dom, and Indyk [22] argue that NB-2bags performed poorly in their
experiments because links from and to pages point to pages on a diverse set of topics,
tending to dilute the efficacy of training text in discriminating a particular topic.
Unlike them, I found no significant difference in performance between NB and NB-
2bags. However, 1 think that their argument accounts for the poor performance of
NB-unth-Neighbors, which was the only algorithm to do significantly worse than NB
on both the chemistry and the physics sets. It is better to concentrate on textual
information simply on the page itself, this would indicate. Manually-assigned labels
on neighbors are useful; labels on neighbors assigned by NB are not, at least when
they are used in the manner of NB-with-Neighbors. However, my experiments provide
evidence that neighbor information, when used in the manner used by Voting- Trumps-
NB or, less effectively, NB-Text-and-Links, is quite useful in providing improvement
over NB alone.

This evidence is a contribution to the literature that can be made use of in the
following manner. Given the large numbers of pages that have been preclassified man-
ually via Dmoz or Yahoo!, this should have a good deal of practical utility, especially
in the classification of those pages’ unclassified neighbors. A very large number of
pages are one or two links away from one or more pages in Dmoz or Yahoo!. This is
because Dmoz and Yahoo! are large and tend to contain the most highly referenced
pages on the Web—often “hubs” or “authorities” in the terminology of the

For each of these pages in Dmoz or Yahoo!, the fact that Voting-Trumps-NB is



79

Table 3.4: Information Used Versus Techniques Employed for the Algorithms Dis-
cussed in this Section; Original Algorithms Shown in Bold Italics; Algorithms from
the Literature, in Ordinary Italics

Naive-Bayes-
Based

Voting-Based

Both  Naive-
Bayes and
Voting-Based

Labels on Simple-Link-
Neighboring Voting
Pages

Text on Page

Naive Bayes

Text on Page | NB-2Bags NB-with-
and Text on Neighbors
Neighboring

Pages

Text on Page | NB-Text-and- Voting-NB-
and Labels on | Links Combined;
Neighboring Voting-
Pages Trumps-NB

the best performing algorithm of the set of algorithms I have considered indicates
that one should classify the page into the most frequent class of the set of 1-hop
and 2-hop neighbors in preference to the class given by NB. This seems to be an
important contribution of this section: this result can be used to guide the activity
of a spider that is classifying pages as well as the building the usual reverse-keyword
index for a search engine. If user feedback is collected about a provisional automatic
classification of a page into a category, this could allow categories to grow in a semi-
automated fashion. If user participation could be solicited in this manner (that is,
if users could be solicited to validate pages that had provisionally been placed into
classes), allowing classes to grow, training sets could also grow, allowing even more

pages to be classified more accurately.
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Table 3.4 illustrates the information used by each of the learning algorithms dis-
cussed in this section versus the techniques that they employ. The two algorithms
(Naive Bayes and NB-2Bags) that I took from the literature are shown in ordinary
italics; the five variants that I devised are shown in bold italics. It is not surpris-
ing that the most successful technique, Voting-Trumps-NB, employs both the most
information and both techniques. As this table illustrates, I have not fully explored
the space of possible variations on these algorithms; however, most of the remaining
empty cells would require that I devise a method to apply a voting-based technique
to textual information. The upper-left cell in the table could be readily filled by us-
ing the link information in the manner used in NB-Tezt-and-Links, but without the
textual information.

In related work, Chakrabarti et al. [22| use a relaxation labeling technique to
incorporate link information into classification. On some of their test beds, they
get significant improvement in classification performance over text classification that
does not use link information. Sean Slattery (e.g. [115]) has done work on applying
relational learners, which learn sets of rules, such as FOIL [94], to Web page classi-
fication, while incorporating link information using the Clever project’s [58] work on

hubs and authorities.

3.4 Review of the Contributions of this Chapter

This chapter has contributed to the literature on the relative importance of classifi-
cation information gathered from neighbor pages as opposed to text on a page itself.

In the “small world” context of the Web, in which large manual classifications ex-



81

ist precisely of the those pages that are most likely to be referenced by others, this
neighbor information is likely to be crucial in improving classification performance of
those many pages which are neighbors of the ever-growing set of pre-classified pages
in human-maintained hierarchies such as Dmoz or Yahoo!.

In Sections 3.1 and 3.2, [ demonstrated that in two different contexts, Web pages
in a particular category are much more likely to point back to other pages in that
category than to other categories, by using a simple, direct voting algorithm. These
sections exist mainly as motivation to Section 3.3, to make the prima facie case that
link information will be useful in supplementing textual information. This point, of
course, has been made elsewhere (e.g. [23]), but I have not seen it done in such a
direct manner. Sections 3.1 and 3.2 demostrate this in two more domains, and in a
simple, direct, manner, using a simple voting algorithm and confusion matrices.

In fact, Section 3.3 makes two contributions to the literature. The first contribu-
tion is the demonstration that, on two datasets, neighbor classification information
alone, when available, should be used in preference to texual information alone; that
is, in the technical terms outlined in the section, that Voting — Trumps — N B signifi-
cantly outperforms N B. I also contribute data on the performance of 4 other variants
of NB and one algorithm involving voting alone.

The second contribution is more practical; if the number of neighbors (that is,
the size of the labelled set) was static and the graph of the Web was random and
uniform, the result that Voting — Trumps — N B significantly outperforms N B would
have little import. But, in fact, the size of the labelled set is constantly growing,
through the efforts of the builders of taxonomies such as Yahoo! and Dmoz. And, the

Web is by no means anywhere close to a random, uniform graph. It has pages that
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have wildly disproportionate numbers of out-links or in-links (“hubs” or “authorities,”
respectively in the terminology of the Clever project [21, 58|). Because of factors like
this, the Web is a “small world” network connected through such highly referenced or
referencing pages—as I have discussed in Section 2.1. And these hub and authority
pages are much more likely to be listed in the manual directories like Yahoo! and
Dmoz. The fact that Voting — Trumps — N B outperforms NB is therefore a sig-
nificant result, because, for instance, if a page X is listed on a hub page that has
been classified under “Biochemistry,” or points to an authority page that has been
classifed under “Biochemistry,” this means that one is better off classifying page X
under “Biochemistry” as well, as opposed to classifying it on the basis of the text on
the page.

If user feedback can be gathered, then users interested in a particular category
should first be queried about unclassified pages with the highest number of neigh-
bors in that category, and then the process could be continued for pages with fewer
neighbors. The problem, in the Web context, is not having enough information; it is
in filtering it properly, and this gives users a way to prioritize their activity. It also
could assist the users who manually construct the taxonomies, in that pages could be

fed to them in an prioritized, automated fashion for acceptance or rejection.
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Chapter 4

Merging Search Engines and

Directories

There is no principled reason why search engines and directories need be two separate
entities. I believe that the reason that they have evolved independently on the Web
is mainly the result of the social history of the Web and of prior interfaces to textual
information, in both electronic and paper form, rather than any explicit engineering
or human interface need for them to have developed in this fashion. Search engines
work like the full-text databases, such as Lexis/Nexis, that predated the Web; Web
directories are based on library card catalogs, although they are actually not as so-
phisticated in some ways. Thus, there has been little imagination used in construction
of new interfaces to massive quantities of text since the Web began.

Starting with a hierarchical classification of Web pages—I have used the pages
of the Open Directory Project (at www.dmoz.org) because of its large size and non-

proprietary nature—it is possible to build a search engine/directory that combines the
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best features of both, and in fact has emergent features which improve on either one
on its own. The SONIA system [104] is another system which combines clustering and
classification, but the architects of this system have not emphasized the close affinity
of page ranking with collaborative filtering, and the ability to use such filtering to
build communities within the information system.

The idea is that every page, as it is encountered by a spider, would both be
classified in a category within a directory, and also its text would be indexed in a
reverse-keyword index. A searcher could search using a keyword phrase, and her
results would be automatically separated into categories. She could click on any one
of these categories and see all the pages in that category, not just the ones matching
her keyword phrase. So, for instance, if she searched for “nirvana,” she might see
25 results about the band, followed by 25 results about the religious concept. If she
clicked on a link representing the category of the band, she would see all the pages
that were about the band, even if some of them did not have the word “nirvana”
on the page, e.g. a page about Kurt Cobain, the band’s star, that happens not to
mention the band by name.

The hierarchical classification of pages in the Open Directory Project forms a tree.
Tables of word frequencies that represent nodes in the tree can be built to characterize
each node. I build such tables in the following manner.

For each category at the leaves of the tree, I treat all the pages in that category
as one large document, visit these pages to collect their text, and stem all words,
then compute frequency counts for each stem associated with each category. I then
compute the frequency count tables for internal category nodes as the sums of the

frequency tables for each of their child nodes, all the way up to the root, in a bottom-
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Figure 4.1: Algorithm Build-Tree-Tables

1. Call B2(root), where root is a pointer to the root of the tree; return.
2. Subroutine B2(p):

(a) If pis a leaf node:

i. Let d be the document formed by concatenating all the documents
categorized under p. Let freqtable(p, W) be the frequency table of
words in this document, composed of a set of (word,frequency) pairs.
Compute fregtable(p) by doing a frequency count within d, and store
freqtable(p) in a persistent database.

(b) if p is not a leaf node:

i. Let S be the set of all the immediate children of p. For each p; in S,
call B2(p;). Compute fregtable(p) by summing up all the frequency
tables freqtable(p;) where i is a member of S. Frequency tables are
summed by summing all the frequencies in each table for each word.

up fashion. Thus the frequency count table for the root node in the table is the global
word stem frequency count. I refer to this algorithm as Build- Tree-Tables; it is shown
in Figure 4.1.

After these frequency tables have been built, the system can start to grow. Ad-
ditional pages can come into the system in two main ways. First of all, they can be
“spidered” off pages that are already in the system, by following links off of those
pages. Secondly, they can come in by doing meta-searches, using other public search
engines. Figure 4.2 illustrates this process.

A meta-search represents a quick way to enlarge the number of pages in a particu-
lar category. In traditional information retrieval, the TFIDF (term-frequency-inverse-
document-frequency) score [5] is used to score terms (words) on their usefulness in

separating documents among a collection; that is, as useful documents in doing queries
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Figure 4.2: Two Processes for Growing a Category within a Tree that Classifies Web
Pages

First Method for Finding New Second Method for Finding New
Candidate Pages for Category X Candidate Pages for Category X

Tree of Categories (e.g. Dmoz)

Sets of characteristic
keywords in pages listed in X

Major Search
Engine

P[] [ web pages listed in Category X

D/ d] b Spidered-off Web Pages from P

(not originally in tree)
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on that collection. For document d; in a collection of documents D, and for every
term (word stem) w in d;, if count(d;, w) is the number of times w appears in d;, and

countdocs(w)is the number of documents in which word w appears, let
TF(d;,w) = count(d;, w) + 1

and let
|D|+1

IDF = _
(w) = log countdocs(w)

)

then the TDIDF score of w in document d; is defined as follows:

TF(d;, w)IDF(w)
V/Zaeen(TF (dy, w)IDF (w))?

TFIDF(d;, w) =

Starting with the pages in a particular category of interest, a variant of the TFIDF
score is computed for each word stem w in that category, which I call the term-
frequency-inverse-global frequency (TFIGF). I define the TGIDF score of w with
respect to a meta-document created by concatenating all the documents in a category,
not with respect to a single document, as in the case of TFIDF. The TFIGF for each
word stem is computed with respect to the global word stem frequency; it is the
frequency of the term in the pages in the category divided by the frequency of the
term in all pages in all categories. That is, the denominator, instead of being the log
of the number of pages in the document set that the term is present in, is simply the
frequency in the global set of pages.

Thus, the TFIGF score reflects the degree to which each word is represented in

the pages in the category in question as compared to how frequently it is represented
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in the universe of pages. So, if C' is the category in question, and countcategory(w, C')
is the number of times that word w appears in some position in all the documents in
C' concatenated together, and countglobal(w) is the number of times word w appears

in some position in all the documents in all categories concatenated together, then

countcategory(w, C')

TFIGF =
GF(w) countglobal (w)

Note that countcategory(w, C) and countglobal(w) are computed using Algorithm
Build-Tree-Tables (see Figure 4.1). These represent pairs in the tables fregtable(p)
where the p are pointers to categories in the tree. The freqtable(p) tables are con-
stucted by that algorithm. The values countcategory(w,C') can be found by looking
in fregtable(p) where p is a pointer to C. Similarly, the values countglobal(w) can
be found by looking in freqtable(p) where p is a pointer to the root category of the
category tree.

Note that TFIDF scores for word stems in order to form document term vectors
were devised in order to respond to queries within the set of documents; that is,
to identify those word stems that were best at separating out documents from one
another. This is where the “IDF” part of “I'FDIF” comes in, the “inverse document
frequency.” IDF represents the (log) inverse of the fraction of the documents in the
set that contain the word stem. Thus if a particular word stem appears in only a
single document, it will be an excellent query term; if it appears in all of them, it will
not be good at distinguishing them at all. Thus, we divide by the DF in order to up-
weight the terms that appear in few documents so that their dot product scores will

be higher, and they will appear higher up on the query output list if a low-frequency
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term is included in the query.

However, if our purpose is not to do queries within a particular set, but rather to
characterize the properties of that set with respect to a universe of documents by using
those terms that are characteristic of the set, the TFIGF score makes more sense.
The purposes of such a characterization are different than that of query ranking. The
characterization is used to gather more pages of the same type, using a search engine
or a customized Web agent /spider.

It makes sense that those word stems with the highest TFIGF scores for a par-
ticular category are the most characteristic of that category. These word stems can
then be passed in conjunction to a search engine to find other pages which are likely
to fit into the same category, or in closely related categories.

Such pages can be used in two possible ways. First, they can be passed directly
back to the searcher who is looking for more pages about a particular subject than
have been pre-classified by the system. These pages are much more likely to be on
point than pages that are located using only a single keyword, because the presence
of multiple keywords will tend to narrow the focus of the search down to a specific
semantic neighborhood.

The second way that such pages can be used is if they are classified into the
hierarchy via a multi-resolution classification algorithm. Naive Bayes, or another
algorithm, may be used here—Naive Bayes tends to be the most popular algorithm,

because it is quite computationally inexpensive and works reasonably well.
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4.1 Global versus Local Spidering and Ranking: A

Different Way to Look at Search Engines

4.1.1 Design of the “Active Portal” Project

As a test bed for some of the ideas in this thesis, I have built a Web site called the
Active Portal project, at www.active-portal.com. The Active Portal project takes its
motivation from the observation that the Web tends to be organized around com-
munities, each associated with a set of Web pages, which typically form something
similar to a clique in the graph of the Web (although some of the pages are also
connected to pages associated with other communities). A similar system for the
automated construction of vertical portals is described in [76].

In an initial version of this system, I built Web pages (“portals”) that served
approximately 100 communities of Web users; in principle, it could be grown to cover
the whole Web, and create a combined search engine/directory as described above.
Each one was fairly narrowly defined, for instance, a few of the categories I used
were “Economics,” “Cats,” and “Charles Dickens.” 1 either manually “seeded” each
of these portals with pages that I found that fit into the category (100 for each
portal) or took pages from a corresponding category in the Open Directory Project,
or some combination of these. The seed set became the core set of pages from which
spiders seek out new pages. As each new page came into the system, it was tested
for membership in the portal.

Initially, the system simply looked for a threshold number of keywords on the

candidate page that were characteristic of the other pages in the set, in order to de-



91

termine whether or not the page should be admitted into the portal. A characteristic
word is defined as a word that is over-represented in the pre-classified pages with
respect to a background set of random pages, using the TFIGF approach described
above. One would expect that pages that have multiple links from pages in the seed
set would be more likely to also be a member of the portal, although this factor is
not used in determining category membership; Active Portal could alternately use an
algorithm such as Voting-Trumps-NB as described in Figure 3.7, which would take
this into account.

Since the new pages encountered do not affect whether or not their successors are
admitted into the portal, a page is admitted to the portal whether it is encountered
sooner or later. However, the ranking is affected by the order of encountering pages,
as we will see when the ranking technique is described below.

The spidering process continues in iterations; as the portal grows, the system will
be following links off of pages that were admitted to the portal earlier. This increases
the distance from the initially manually-classified pages, and will increase the error
rate, since pages further away from the initial seed set are less likely to be in the
category. However, since the criterion for membership in the portal is based on the
statistical properties of the initial manually-classified pages, the new pages all need
to meet criteria based on those initial pages.

One way to deal this is to explicitly make it harder to make it into the category
if you are farther from a manually-classified page; I have not yet done this. Another
way is to explicitly strip out links to the pages that are most highly-referenced on
the Web as a whole, such as www.yahoo.com and www.microsoft.com, since these

are unlikely to fit into a particular category, but the spider would likely visit them; I
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discuss this in the context of clustering in Section 6.1.

Another way to deal with this is to use user feedback to filter pages, either ex-
plicitly in terms of user ratings of pages (admittedly hard to gather) or implicitly in
terms of user “click-out” rates (that is, how often visitors click on these pages in the
portal). Pages with high ratings or high click-out rates would be moved higher up in
the portal. Another strategy would be to allow users to further filter results within
the portal with additional query strings.

One way to improve this system, which [ may implement in the next version, is to
assign a TFIGF score to each word on each page. The total score of a particular page
would then be the sum of the scores of the words on that page, divided by the number
of words on the page in order to normalize the scores. The advantage of such a system
is that it would not be brittle, since the presence of any particular keyword would
not be necessary in order to give a page a high rank relative to a category. It would
also be possible to gather new pages for a particular category from a reverse-keyword
index using different combinations of keywords, even disjoint sets of such keywords.

Thus, unlike a general search engine spider, which wanders the Web in a breadth-
first search or some version of a “best-first” search, this spider wanders only off of
pages that have already been admitted into the portal. Thus it is much more likely
to encounter pages that fit well in the portal. A way to improve this even more is
to visit those pages that are referred to by multiple pages in the portal first. Or,
a more sophisticated scoring system would give high scores to those pages that had
high individual scores and were pointed to by a large number of other pages with
high individual scores (recursively, in the manner of Google’s PageRank).

This gets to one of the main criticisms I (and others) have had of mainstream
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search engines. Arguably, Google, of the major search engines, does the best job
in ranking the output of a search query (although this is a subjective assessment).
But Google’s PageRank is relative to the entire Web; it does not rank its output
relative to the query very well, although it attempts, in some manner (that is not
disclosed to the public), to combine the global PageRank value with the query words
in producing the final ranking. Other search engines, such as Altavista, rank their
pages by some combination of the in-links into each page ranked and the words in
the search query, so the rank is somewhat relative to the query. But they make
no use of words that are semantically close to words in the search query, which the
TFIGF spidering approach described above does. Often searchers do not think of
related words that could improve their query results, and the TFIGF approach can
automatically gather these.

The approach for page ranking used by Active Portal is twofold. It uses a com-
bination of the number of words that are characteristic of the portal on a page and
the number of pages also in the portal that point to the page. The number of charac-
teristic words is set via a tuning parameter n'. This process is shown in Figure 4.3.
Thus the ranking becomes conteztualized to the particular area of the Web of interest,
rather than a global search ranking. (By contextualized, I mean specific to a partic-
ular environment, rather than general.) I believe that such a topical, contextualized
ranking is more appropriate to most actual searches than the rankings returned by
most general search engines, since almost all searches are topical by their nature.

Active Portal, in its present state (because it does not incorporate all of DMOZ,

has not done very extensive spidering as compared to the public search engines, and

'T have used n = 500 for my experiments, but I think this may be too high, in that it introduces
too much noise.
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Figure 4.3: Active Portal Page Ranking Procedure

. The characteristic words of a portal are defined as the n (a tuning parameter)
top words within the portal ranked in terms of their TFIGF score. To compute
these words:

. Let topwordstot = 0; inlinkstot = 0.

. For each page p in the portal:

(a) Count how many words characteristic to the portal are on page p. Call
this topwords(p). Let topwordstot = topwordstot + totwords(p).

(b) Count how many inlinks p has from other pages. Call this inlinks(p). Let
inlinkstot = inlinkstot + inlinks(p).

. For each page p in the portal, let

rank(p) = inlinks(p)  topwords(p)

inlinkstot ~ topwordstot

. Sort pages with the portal in descending order by rank(p). This treats inlinks
and characteristic words equally in terms of giving a page a high rank in the
portal.
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does not have a reverse-keyword index), is more akin to a directory (like Yahoo! or
Dmoz) than a search engine (like Google and AltaVista). In principle, if all these
limitations were overcome, it would become a hybrid tool, with the ability to look
at results both in terms of categories and in terms of keyword searches, and quickly

navigate between each.

4.1.2 An Informal Evaluation of Active Portal

A library science student? evaluated Active Portal with respect to four other Internet
directories (Yahoo!, LookSmart, Snap, and About) [131]. Two topics were considered
that were covered by Active Portal-pages on the television show “Seaquest” and pages
on sweatshop labor.

Active Portal had 112 pages listed on Seaquest and 305 on sweatshops. Active
Portal had poorer precision than the others (which all had perfect precision, since
all of the rest had done their categorization manually), but all the rest had much
lower recall (fewer pages listed). This student examined the first 30 results on Active
Portal in each list, and most were on topic, or on closely related topics, as judged by
her. (Unfortunately, she did not make an actual count of those that were on topic
relative to those that were not, so we cannot estimate precision for Active Portal
quantitatively here; however I have done so in the context of a comparison to Google
in Section 4.1.3 below).

For each topic, Active Portal was compared to three of the others. For Seaquest,

Yahoo! had 14 links, LookSmart had 9 links and Snap had 5 links (there was overlap

2My sister did this as a class project; obviously, she is not the most unbiased evaluator, but I
believe that her results are still valid.
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Table 4.1: Number of Pages in Each System for Two Topics

System
Yahoo! | LookSmart | Snap | About | Active Portal
“Seaquest” 14 19 5 N.A. 112
Sweatshops 24 19 N.A. 17 305

between all the directories). For sweatshops, Yahoo! had 24 links, LookSmart had
19 links, and About had 17 links (again, there was overlap; About was substituted
for Snap because Snap lacked the sweatshop category). These date are summarized
in Table 4.1.

Of course, these results are subject to the limit that they were only examined by
one person, albeit someone studying librarianship. All the directories have perfect
precision, because we are looking specifically at pages that were manually classified
into each category. So, for instance, LookSmart had 100% precision on its pages on
Seaquest, because we are only considering the Seaquest category in LookSmart.

Thus, according to this evaluation, Active Portal had much better recall, at the
expense of some precision. Generally, there is a tradeoff between recall and precision;
trivially, if all documents are returned in response to all information requests, all
responses contain all the documents desired, and there is perfect recall, but very low
precision. On the other hand, if you shape a very precise query to a search engine, it
may return only a single document (which is on topic) when there are several hundred

fitting the topic you are looking for; then you have low recall but perfect precision.
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Table 4.2: Comparison of Active Portal to Google

Query | Search Engine | Precision (first 100 results) | Total # Results
Nirvana | Active Portal 78 22,316
Nirvana Google 45 1,070,000
Hanson | Active Portal 53 2,467
Hanson Google 16 1,620,000

4.1.3 An Informal Comparison of Active Portal to Google

I also compared Active Portal on two topics with queries to Google. The two topics
were both about musical groups: Nirvana and Hanson. The queries to Google were
these single words: “nirvana” and “hanson.” T manually compared the first 100 results
for each. For Nirvana, 78 of the 100 were on topic in Active Portal, as opposed to
45 for Google. For Hanson, 53 were on topic for Active Portal, and 16 for Google.
All of Google’s off-topic pages were related to other meanings of these two words (for
instance, nirvana’s meaning in Buddhist philosophy). More precise queries would
improve Google’s results, but typical users are known to not be particularly skilled at
formulating precise queries [75]. Recall is irrelevant, because both systems returned
more results than anyone could reasonably look through (for Nirvana, Active Portal
had 22,316 links and Google returned about 1,070,000; for Hanson, Active Portal had
2,467 links and Google returned about 1,620,000; Google has a big advantage here

because it has done much more spidering). These data are summarized in Table 4.2.
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4.1.4 Discussion: Page Ranking and Disambiguation

What is the optimal way to rank pages?” The optimal way is in the order that
the surfer/searcher would prefer to see them. Unfortunately, given the relatively
impoverished nature of many search queries, it is often difficult to gauge the intent
of the surfer/searcher. The above approach, by enriching the keywords of the search
by finding the semantic neighborhood of those keywords, may clarify this intent to
some extent, but not to a perfect extent. However, I have not done the necessary
experiments with human subjects that would be needed to compare different ranking
systems, such as the one I propose with others publicly available, such as Google’s,
although I have done some related experiments on page ranking with human subjects
in Chapter 5.

An ideal search technique would involve allowing the searcher to ask questions
in natural language and would return pages that answered those questions, or ask
for information about a topic described in natural language and have such informa-
tion returned. But the best known of such systems, Ask Jeeves, at www.ask.com,
uses case-based natural language processing techniques that were developed in the
1970s, essentially attempting to match each user’s queries against a match of manu-
ally predefined case-frames. These are akin to scripts or schemas, which were highly
popular in the early years of Al, before the resurgence of machine learning and neural
networks.

One way to rank pages that are returned as the result of an ambiguous query (and
many, if not most, queries are ambiguous) is to separate out the different meanings
of the query and then rank the pages within each meaning. In Chapter 6, I discuss

techniques that might be used for such disambiguation. All that Google does is
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show the classification of those pages that have been manually classified by the Open
Directory Project, but it does not separate the results from one another. And in
the case of an ambiguous query, Google (like other search engines) can perform quite
poorly. For instance, if you search for “bear” in Google, it shows you the “Smokey
the Bear” main page, which is primarily about forest fires. Presumably, since it ranks
high in Google, lots of other other prominent sites link to it, but it is not primarily
about bears (although the site does contain some information about bears). It is not
until the 12th result, the North American Bear Center, do we find a result that is
actually primarily about bears.

In my experience, the search engine that does the best job at disambiguation is
Northern Light. Northern Light can, at user request, separate results into what it
calls “custom search folders,” but it is unclear whether the ranking of the results
within each such folder is contextually ranked.® In Section 6.1.6, I discuss two new
search engines that do something similar.

Some researchers have used the metaphor of “information ecology” to describe
the information search process; research groups have been organized around this
metaphor, at Xerox PARC most notably (e.g. [90][89]). In this, the searcher is
like an animal grazing in its environment, searching for particularly choice niches
(parts of the Web) or Web pages within a niche. Each searcher is a different kind
of animal, with different tastes in food, but there are also species of searchers, that
is, communities of interest. Some people produce “food” that others “eat;” that is,
generally, a small subset of the community tends to produce content that is consumed

by the rest of the community. Search engines need to take into account human needs

3 At this writing, Northern Light’s public Web search engine is no longer available.



100

in order to improve their results and their interfaces to those results.

4.2 Using a Tree of Classified Pages to Find More
Relevant Pages and Classify Them

Dmoz classifies all of the pages that it contains into a spot in its hierarchy. These pages
have been manually classified, which is, of course, very labor-intensive. However,
given sufficient pre-classified pages, it should be possible to extend this set in an
automated fashion and get reasonable results. Weigend, Wiener, and Pedersen have
applied neural networks to classifying text documents hierarchically, where the neural
network architecture reflects the hierarchy of the classification [122|. Mladenic has
experimented with classifying pages in the Yahoo! hierarchy using the Naive Bayes
algorithm with a customized feature set [80].

There are two basic ways (that I have thought of so far) to extend pre-classified
hierarchies. The first is to calculate the keyword centroid of all the pages in a partic-
ular set, and then pass highly weighted keywords to search engines to get more pages
back, which then are classified. This is the approach I have taken in Section 4.3. In
this section, I discuss the approach of spidering off existing pages pre-classified in a

tree and attempting to classify them.

4.2.1 Hypothesis

A effective method for “growing” a tree of pre-classified Web pages would be by

spidering off of pages in this tree and applying a multi-resolution version of the Naive
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Bayes algorithm.

4.2.2 Method

For this experiment, I have used all of the categories one or two levels below the
“/Science/Biology” category in Dmoz. The tree below “/Science/Biology” is actually
deeper and more complex, but for simplicity I have only considered those pages at
these three levels (level 0, the root, and levels 1 and 2, respectively one and two
levels below it). The three levels of the tree are shown in Tables 4.3, 4.4 and 4.5. A
page is considered to be in a category if it is directly classified in that category by
Dmoz. That is, in Dmoz’s classification scheme (like in Yahoo!’s), not all pages are
classified at the leaves of the tree; some are classified at internal ones. In the three
level “/Science/Biology” tree here in question, I have included only pages directly
classified at the nodes in question, most of which are internal nodes in the full tree.

A hierarchical or multi-resolution version of the Naive Bayes algorithm works as
follows. It uses hill-climbing search. It searches the tree, starting at the root node,
and considers as categories the root node and all of its immediate children. These
become the categories for the first iteration of Naive Bayes. If the root node is the
winner, the algorithm stops, and the page being classified is put into that category.
If not, the winning child becomes the new root, and the algorithm repeats. It can
be applied to as many levels as one desires; in my experiments, I have confined it to
a tree of height 2 with 3 levels, the “/Science/Biology” tree discussed above. This
algorithm is described in pseudocode in Figure 4.4.

If m is the height of the tree (here 2) and n is the number of children per node

(here varying from node to node), then the complexity of this algorithm is O (kmn),



102

Table 4.3: Dmoz “/Science/Biology” Sub-Categories 1-50 of 174, with the Number of
Pages Pre-Classified in each Sub-Category

root category 9 | Biotechnology/Stem Cells 2
Associations 2 | Botany 44
Biochemistry 13 | Botany/Associations 6
Biochem/Directories 14 | Botany/Dendrology 9
Biochem/DNA 9 | Botany/Directories 13
Biochem/Education 7 | Botany/Education 36
Biochem /Laboratories 9 | Botany/Ethnobotany 26
Biochem /Metabolic_ Pathways | 9 | Botany/Journals 37
Biochem/Methods& Techniques | 10 | Botany/Lichens 16
Biochem/On-line_journals 101 | Botany/Paleobotany 20
Biochem/Organizations 9 | Botany/Phycology 37
Biochem/Proteins&Enzymes 12 | Botany/Plants 16
Biochem /Software 51 | Botany/Plant_Pathology 6
Bioinformatics 67 | Botany/Plant Physiology 21
Biophysics 7 | Business 26
Biophysics/Internet  Resources | 3 | Business/Contract Research Associations | 9
Biophysics/Research _ Centers 9 | Cell_Biology 12
Biotechnology 45 | Cell _Bio/Apoptosis 5
Biotech/Careers 6 | Cell_Bio/Cell _Culture 27
Biotech/Companies 121 | Cell Bio/Cell Cycle 5
Biotech/Courses& Workshops 5 | Cell Bio/Cell Membrane and Adhesion | 8
Biotech/Directories 24 | Cell Bio/Cytoskeleton 13
Biotech/Meetings 12 | Cell _Bio/Education 8
Biotech/Phytoremediation 4 | Cell_Bio/Image_Galleries 5
Biotech/Publications 31 | Cell_Bio/Journals 18
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Table 4.4: Dmoz “/Science/Biology” Sub-Categories 51-100 of 174, with the Number
of Pages Pre-Classified in Each Sub-Category

Cell _Bio/Laboratories 13 | Ecology/Publications 1
Cell Bio/Methods and Techniques 4 | Ecology/Research Centers 2
Cell Bio/Organizations 16 | Ecology/Restoration Ecology 14
Cell Bio/Signal Transduction 11 | Ecology/Software 19
Cryobiology 31 | Ecology/Spatial _Analysis 8
Cryo/Cryonics 33 | Ecology/Wildlife_Ecology 212
Cryo/Sperm, ova, embryo storage 25 | Education 30
Cryo/Supplies_and _Equipment 6 | Education/Bioinformatics 10
Cryo/Umbil cord stem cell storage | 9 | Education/Conference&Workshops 3
Developmental Biology 17 | Education/Departments 4
Developmental Bio/Journals 5 | Education/Online Courses 15
Developmental _Bio/Laboratories 4 | Education/Online_ Textbooks 10
Developmental _Bio/Model _Organisms | 21 | Education/Tutorials 38
Developmental _Bio/Organizations 5 | Equipment and_Supplies 11
Directories 33 | Equip&Supplies/Contract Services | 3
Ecology 8 | Equip&Supplies/Field Biology 4
Ecology/Aquatic_ Ecology 31 | Equip&Supplies/Gen_Distributors | 12
Ecology/Associations 7 | Equip&Supplies/Instrumentation 17
Ecology/Biogeography 11 | Equip&Supplies/Living _Systems 7
Ecology/Conferences 5 | Equip&Supplies/Microscopy 29
Ecology/Consultants 9 | Equip&Supplies/Reagants&Kits 15
Ecology /Ecosystems 10 | Equip&Supplies/Software 17
Ecology /Education 9 | Evolution 27
Ecology/Microbial Ecology 4 | Evolution/History 9
Ecology /Molecular_Ecology 5 | Evolution/Human _Evolution 27
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Table 4.5: Dmoz “/Science/Biology” sub-categories 101-174 of 174, with the number
of pages pre-classified in each sub-category

Evolution/Internet _Directories 4 | Microbio/Taxonomy&Nomenclature | 2
Evolution/Journals 1 | Microbio/Virology 14
Evolution/Molecular 10 | Mycology 21
Evolution/Software 8 | Neurobiology 33
Genetics 14 | Neurobiology/Addiction 10
Genetics/Employment 0 | Neurobiology/Brain_Images 5
Genetics/Eukaryotic 2 | Neurobiology/Institutions 10
Genetics/Journals 20 | Neurobiology/Journals 4
Genetics/Mutagenicity Neurobiology /Organizations 7
Genetics/Organelles Physiology 14
Genetics/Prokaryotic Reference 15
Genetics/Societal Issues 22 | Research Centers 12
Genetics/Software 15 | Sociobiology 13
Histology 7 | Sociobio/Education 5
History 5 | Sociobio/Evolutionary Psychology | 11
Immunology 14 | Taxonomy 12
Immunology/Associations 9 | Taxonomy/Software 8
Immunology/Cytokines 5 | Taxonomy/Taxonomy Map 5
Immunology/Immune_Deficiency _Disorders | 18 | Theoretical _Biology 10
Immunology /Immunologists 1 | Toxicology 26
Immunology/Journals 8 | Zoology 26
Immunology/Reference 13 | Zoology/Academic_Departments 1
Immunology/Research Centers 14 | Zoology/Acoelomates 18
Immunology/University Programs 14 | Zoology/Animal Behavior 8
Journals 8 | Zoology/Annelida 10
Methods and_Techniques 4 | Zoology/Arthropoda 5
Microbiology 23 | Zoology/Chordates 6
Microbiology /Directories 9 | Zoology/Echinodermata 9
Microbiology /Environmental Microbiology | 13 | Zoology/Images 14
Microbiology/Funding_ Sources 1 | Zoology/Journals 9
Microbiology /Journals 7 | Zoology/Lophophorates 14
Microbiology /Microbiology Courses 19 | Zoology/Misc.-Deuterostomes 4
Microbiology /Microbiology _News 4 | Zoology/Misc.-Protostomes 1
Microbiology /Parasites 17 | Zoology/Mollusca 11
Microbiology /Protoctista 10 | Zoology/Porifera 12
Microbiology /Reference Labs 1 | Zoology/Pseudocoelomates 4
Microbiology /Suppliers _and Companies 18 | Zoology/Radiata 16
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Figure 4.4: Multi-Resolution Naive Bayes Algorithm

1. Call MNB (root,d) where d is the document to classified and root is a pointer to
the root of a tree in which it should be classified; exit.

2. Subroutine MNB(p,d) where p is a pointer to a node in the tree:

(a) Form the set P consisting of p and all of its child nodes.

(b) Consider all the members of P of these as the categories for classification
for the Naive Bayes algorithm (see Figure 3.3); note, if a category has not
been visited before, its term frequency statistics will need to be computed
and stored in a database; otherwise, the statistics can be read from the
database.

(c) Let p; be the node representing the category in which Naive Bayes decides
to classify d.

(d) If p = py, return p as the category in which the algorithm classifies d.
(e) If p # py, call MNB(py, d).

where k is the number of steps in a single Naive Bayes computation. This is not an
optimal algorithm; it does not find the best category for each page. An alternative,
exhaustive algorithm would be one that considers all of the nodes in the tree as equal
and does a single Naive Bayes step for all of them. Let us refer to this as Exhaustive
Naive Bayes for the purposes of this section.

However, the exhaustive algorithm visits all the nodes in the tree, rather than just
the fraction visited by the hill-climbing search, and therefore is much more costly in
time. Since the number of nodes in a tree, however, grows exponentially, while the
time for the search is linear in the height of the tree, in most circumstances it is not
practical to consider an exhaustive search of all the possible categories that a page

could be classified into. However, one compromise might be to use a hill-climbing
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search as described above to find a candidate category for classification, and then
do a exhaustive search in some relatively small neighborhood around that candidate
category to see if any other category beats the candidate one in terms of its score on
the Naive Bayes algorithm.

One additional way that the multi-resolution version might vary from the normal
version of Naive Bayes would be to use all the aggregated statistics of all the descen-
dants of all the children in making the decision between the root and its children at
each stage of the algorithm. However, it would not do to do this for the root itself,
because it would probably lead to too many pages remaining classified at the root,
as an approximately “average” category, and thus defeat the purpose of a tree-like
categorization.

One way to test the multi-resolution version of Naive Bayes is to see what pro-
portion of pages are classified back into the category from which they have been
pre-classified by the Dmoz editors. However, in the multi-resolution version, a mis-
classification is not necessarily a complete failure of classification, since there are
several different ways in which a particular page might be classified.

For instance, in the three-level “/Science/Biology” tree in question, a page origi-
nally classified in a leaf node might be classified in one of the following places: 1) in
its original category; 2) in the parent node of its original category; 3) in one of the
sibling nodes of its original category; 4) at the root node; or 5) elsewhere in the tree.
Classification in (1) is best; of the rest, it seems to me that classification in (2) or (3)
is not bad as classification in (5) and perhaps (4) as well.

For a page originally classified at one of the interior nodes; the situation is different.

It could be classified in: 1) its original spot; 2) in one of its children; 3) in the root; 4)
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elsewhere in the tree. Again, (1) and (2) are better classifications than the others. For
a page originally classified at the root node, it could be classified by multi-resolution
Naive Bayes at the root node or some node below the root. It is not clear that any
place below the root is better than any other, although one might argue that the
higher up in the tree (closer to the root) the better in this case, because the original
classification was minimally specific, so the less specific the classification, the better.

In the original Dmoz 3-level “/Science/Biology” tree, there were 2,767 pages clas-
sified by the editors as being in one of the categories on the three levels of the tree.
When I actually tried to retrieve these pages from the Web, 224 were not successfully
retrieved, and the remaining 2,543 were successfully retrieved. This represents a 91.9
percent successful retrieval rate. The categories in the tree are shown in Tables 4.3,
4.4 and 4.5. As one can see from the tables, there is a very uneven distribution of
pages among the categories, which is usual.

In the tree, there are 32 nodes at level 1, and 141 nodes at level 2. This means
that there is an average fan-out of 4.4 to level 2, but the distribution of categories
at level 2 is very uneven. The structure of the tree means that there are a total of
1+ 32 + 141 = 174 categories in which each page can be classified. In this example,
exhaustively examining each page for each category means that there would be a total
of 2,543 % 174 Naive Bayes steps, or 442,482. However, if you consider the fan-out of
32 at level 1 and the average fan-out of 4.4 at level 2, a multi-resolution Naive Bayes
would take an average of ((1 + 32) + (1 + 4.4)) * 2,543 = 38.4 x 2,543 = 97,651.2
steps. This is obviously much better, and of course the improvement would be even
more marked with a bigger tree. And of course this assumes that the complexity of

the algorithm is governed by the average fan-out, which is an approximation.
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4.2.3 Results and Discussion
Pages Classified in Dmoz Under “/Science/Biology”

The most frequently occurring category assignment at levels 1 or 2 of the tree is
“/Science/Biology /Ecology /Wildlife ~Ecology,” which has 212 pages assigned to it.
If we always assigned pages to this category, we would get 212/2767 = 7.7 percent
correct. Multi-resolution Naive Bayes does considerably better than this, in this
experiment. It classifies 17.9 percent of the pages back into the correct category.*
This may not seem very impressive, but there are two factors working against the
algorithm; the large number of candidate categories, and the close similarity of many
of the categories. It is much easier to distinguish pages that are from widely disparate
subjects than pages that are within the same general subject area, because the overlap
in term usage between pages is likely to be much larger in the latter case than in
the former. These factors may contribute to the relatively low percentage classified
correctly, although this is only a plausible conjecture at this point.

The most frequently occurring classification, if you consider branches of the tree
at level 1 (that is, all pages in a level 1 category or any of its children considered as a
single category), is “/Science/Biology/Ecology;” there are 494 pages in that branch.
If we always assigned pages to that branch, we would get 494/2767=17.9 percent
correct. If you consider whether or not the page has been classified back into the
same branch at level 1, the performance is considerably better. Almost half, or 46.7

percent, of pages are classified back into the same level 1 branch. Thus there is a good

4Strictly speaking, I should drop each page being classified from the training set and recompute
the Naive Bayes probabilities at all nodes without that page in order to test it. This would be cheap
computationally if I retain the raw frequencies at all nodes; it would involve a simple substraction.
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reason to believe that if pages are being misclassified at level 2, the misclassifications
are not severe. Many pages could probably be classified into more than one category,
in any case.

It turns out that many of the pages that are misclassified are put into “/Sci-
ence/Biology /Ecology/Wildlife Ecology.” As we have seen, this is the single most
frequent category, so this is not surprising, because Naive Bayes weights the classi-
fication by the overall probability that a page falls into a category. If this factor is
removed in this case, performance is slightly improved, to 18.2 percent correct at level
2 and 48.2 percent correct at level 1.

Exhaustive Naive Bayes performs somewhat better than multi-resolutional Naive
Bayes on these pages, classifying 55.2 percent of them into the correct branch, and

27.2 percent into the correct category.

Pages Linked Off of the /Dmoz “/Science/Biology” Pages

We also consider the performance on pages that are linked off of pages in the “/Sci-
ence/Biology” hierarchy (at levels one or two as above). The 2,543 pages in “/Sci-
ence/Biology” that I retrieved from the Web had a total of 68,937 links off of them,
or an average of 27.1 links per page (although this is obviously very unevenly dis-
tributed). However, due to time and space constraints, I did not want to retrieve all
68,937 pages, so I decided to limit the number retrieved to a maximum of five links
per page; this resulted in a list of 9,498 pages, or approximately 3.7 per page (again,
unequally distributed). I expected that these linked pages would not classify as well
into the categories of the pages that they are linked off as the original pre-classified

pages, but they would nevertheless classify into categories at levels 1 and 2 at a rate
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significantly better than what would be expected by chance.

It turned out that the rate of successful retrieval was considerably less for these
linked pages. Of the 9,498 pages on the list of links, only 7,051 were successfully
retrieved, for a retrieval rate of about 74 percent. This is not surprising, because
manually cataloged addresses tend to be skewed toward home pages and hub and
authority pages, which are more likely to have stable Web addresses.

However, assuming that these pages should be classified in the same category as
the pages that they were linked from (only a fair-to-middling assumption, but the best
that we can make without examining the pages manually), the 7,051 pages classified
properly at rates that were higher than what you expect via assignment to the most
frequent category (as above). 9.4 percent of the pages classified “correctly” at level 2
(compared to 7.7 percent). 41.7 percent of the pages classified “correctly” at level 1
(that is, in the correct level branch, compared to 17.9 percent). The performance at
level 1 was comparable with the original pre-classified pages, which classified in the
high 40s. Thus, it appears to be a plausible strategy to use spidering to acquire new
pages to fit them into a hierarchy, although the fit will no doubt not be perfect. In
combination with a strategy of using clusters of pages to identify sets (see Chapter
6), it could be quite powerful.

On these pages, exhaustive Naive Bayes again did somewhat better, picking the
correct branch for 50.6 percent of the pages, and the correct category for 16.2 percent

of the pages.



111

Categories at the Top of the Dmoz Tree

As another experiment in using hierarchical Naive Bayes to classify pages within a
tree, I selected some pages from Dmoz where the semantic separation between the
categories is subjectively much larger than the sub-categories found within “/Sci-
ence/Biology.” These pages were the 10,381 pages classified at levels 1 and 2 of the
entire Dmoz tree; that is, the pages at “/Arts,” “/Business,” “/Computers,” “/Games,”
“/Health,” “/Home,” “/News,” “/Recreation,” “/Reference,” “/Regional,” “/Science,”
“/Shopping,” and “/Sports.”> So there were 13 such categories at level 1; below these,
there were a total of 467 categories at level 2, for an average fan-out of 35.9. There
are fewer categories at level 1 than there were in the case of “/Science/Biology,” but
the fan-out is much higher, so the total number of categories is higher. Pages were
most frequently classified into the branch “/Sports” (2299 pages) and into the spe-
cific category “/Shopping/Jewelry” (332 pages). If you pick always the most common
branch or category, these correspond to chances of correct classification into the cor-
rect branch at level 1 of 2299/10381 = 22.1 percent and chances of 332/10381 = 3.2
percent respectively.

Of the 10,381 pages classified in these categories at levels 1 or 2, the vast majority
were classified at level 2 (only 56 pages were classified at level 1). When I tried to
retrieve the 10,381 pages from the Web, 8,938 of them returned, or about 86 percent.
At level 1, 70.3 percent of these pages classified correctly using multi-resolution Naive
Bayes, much higher than the 22.1 percent you would expect by always picking the

branch into which pages are most frequently classified. Applying multi-resolution

°I did not include the “/Adult,” “/Regional,” “/World,” and “/Bookmarks” parts of the hierar-
chy because these contained pornographic material, non-English material, and users’ bookmarks
respectively.
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Naive Bayes to both levels, 35.7 percent classified correctly, also much higher than
the 3.2 percent that you would expect by always picking the most frequent category.
The high level of classification at level 1 means that the severity of the incorrect
classifications at level 2 is not great; that is, most of the mis-classified items are being
placed in a sister category.

Applying exhaustive Naive Bayes to these pages, performance was somewhat
worse. It placed 41.4 percent of pages into the correct branch and 29.0 percent
of pages into the correct category.

I spidered off of the 8,938 pages, selecting up to three links per page. This created
a list of 20,114 pages. Of these, 18,013 returned from the Web, or about 90 percent.
Of course, simply because a page that is pre-classified points to another page, that
does not mean that the latter page also falls into the same category. Nevertheless,
assuming that such linked pages should be classified into the same category, the cor-
rect classification rates are 56.7 percent and 22.3 percent at level 1 (correct branch)
and overall respectively, higher than what you would expect by picking the correct
branch or specific category. The greater fall off in the classification rates than one
would expect with a true pre-classified test set is due to the fact that many of these
pages no doubt do not belong to the same category as the page pointing to them.
Nevertheless, the relatively high correct classification rates would make extending
a directory using links feasible, in my opinion, especially if coupled with collabora-
tive filtering of these links within each directory category (“vertical portal”) and a
sophisticated link-ordering algorithm within each vertical portal that combines user
ratings, category-specific in-links, and degree of membership in the category based

on the similarity of the text of the page to the category centroid.
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When I applied exhaustive Naive Bayes to these linked pages, I found that the al-
gorithm classified 32.4 percent of the pages into the “correct” branch and 17.9 percent
into the “correct category.” This was worse than the multi-resolution algorithm.

As an alternative to these two versions of Naive Bayes, a version of the k nearest-
neighbor (KNN) algorithm [74] could be used to classify linked pages. A page could
be classified into the category that the largest number of its neighbors falls into, using
only those neighbors that have been manually-labeled. Here, we would not be using
Euclidian distance, but would simply be counting as neighbors those pages that are

linked to a particular page (in either direction).

4.2.4 Summary of the Performance of Multi-Resolution Naive
Bayes

A summary of the performance of multi-resolution Naive Bayes with respect to the
four sets of pages on which it has been tested is given in Table 4.6. As we have
seen, the performance is better when there is more semantic separation between the
categories. Performance is uniformly worse on the linked pages (second and fourth
sets in the table) than it is on the pre-classified ones, because of the assumption
that they belong to the same category as the pages from which they are linked,
which is only a fair assumption. Multi-resolution Naive Bayes performs better than
exhaustive Naive Bayes on the root pages and on the pages linked from them, and
worse than exhaustive Naive Bayes on the Dmoz “/Science/Biology” pages and the
pages linked from them. It is not clear precisely what circumstances lead one of these

to be perform better than the other; further experiments are needed. However, it is
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Table 4.6: Performance of Multi-Resolution (M) Naive Bayes and Exhaustive (X)
Naive Bayes on Four Sets of Pages

Set of Pages categories | pages | Alg. | % Correct | % Correct Cate-
Branch gory

Dmoz “/Sci- 174 2,643 M | 46.7 17.9
ence/Biology”

X 55.2 27.2
Linked off 174 7,051 M | 41.7 9.4
Dmoz “/Sci-
ence/Biology”

X 50.6 16.2
Root Dmoz Cat- 378 8,938 M | 70.3 35.7
egories

X 414 29.0
Linked Off of 378 18,013 | M | 56.7 22.3
Root Dmoz Cat-
egories

X 324 17.9

a perhaps surprising fact that multi-resolution Naive Bayes can sometimes perform
better. This may be because it can sometimes do a better job of selecting the right
branch and filtering out noisy classifications based on too little data at the level of

the individual category.
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4.3 Extending Pre-Classified Sets by Using their

Centroids and Reverse-Keyword Search Engines

4.3.1 Hypothesis

A TFIDF centroid of a set of pre-classified pages can be useful in finding words to

pass to search engines to find additional pages in the same class (category).

4.3.2 Method

Yahoo! and Dmoz both provide large numbers of pre-classified pages. One approach
is to compute the TFIDF centroid of one of the categories in such a classification
scheme. Here, each page is represented by a normalized TFIDF vector in the usual
vector space model [5], using a root-sum-squared method for normalization so each
page is treated equally in the centroid. The centroid is the normalized average of all
of these vectors, for all of the pages in the category. This method of computing the
centroid is given in pseudocode in Figure 4.5.

Centroids are usually used in the context of clustering, for example in [56], but
in this case we are not using clusters, which are typically created through automatic
partitioning within sets of documents without supervision by a user or users. Here, we
are simply using the centroid to characterize a set of documents, which have already

been clustered.
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Figure 4.5: Computing the Normalized TFIDF Centroid of a Set of Documents D
1. For each document d; in D:

(a) For each wordstem w in d;, if count(d;, w) is the number of times w appears
in d;, and countdocs(w) is the number of documents in D in which word
w appears, let
TF(d;,w) = count(d;, w) + 1
and let
D +1

IDF =log(—————
(w) = log( countdocs(w)

)

then the TDIDF score of w in document d; is defined as follows:
TF(d;,w)IDF(w)

\/EdkED(TF(dka w)IDF (w))?

TFIDF(d;,w) =

(b) Represent d; by a vector of the TFIDF(d;, w) for all w in d;.

2. Let ¢ = >, d; be the non-normalized centroid vector of the d;, where the d; are
in their (normalized) vector representations.

3. For all components c; of ¢, let rss(c) = {/3;(c;)?. Redefine c, the normalized

centroid vector, as ¢ < @, and return it.
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4.3.3 Results of TFIDF Centroid Computation: Physics

Table 4.7 shows the centroid that was computed using 1,782 of the 1,899 pages listed
in Dmoz’s “/Science/Physics” category (which has a number of sub-categories that
are aggregated here). (Some of the pages could not be retrieved, because of dead
links.) There are actually about 50,000 word stems listed in the centroid, with the
sum squares of their scores equaling one. (Stemming was performed on each docu-
ment’s representation before the TFIDF scores were computed, so the centroid vector
contains only the word stems as well.) I list only the top 50 word stems here, sorted by
descending value in the centroid’s vector representation, after dropping those words
found on a “stop list” of common words such as “the,” which was in part obtained
from a colleague.

Many of the above words are closely associated with physics, but some of them are

only associated with universities and not physics in particular (e.g. “department,” “re-

boIN13

search,” “lecture,” “course,” and “student”). Some of them are very general words (e.g.

7«

“main,” “please,” “time,” “light,” etc.).® In my judgment, the following 13 words in the

7« ”

list in Table 4.7 are tightly associated with physics: “physics,” “quantum,” “plasma,”

bA A bA N3 bRINA4 PR3 bAAN1A bR A4

“particle,” “neutrino,” “einstein,” “laser,” “vacuum,” “fusion,” “nuclear,” “mass,” “me-

chanics,”and “wave.” 1 did a Google search using the first ten terms in the table,

which returned 615 results, of which I considered the first 264.7

6The word “requested” appears because it is part of pages that are no longer present, and the
text “the requested URL is no longer present on the server” is returned. (I did not attempt to
remove these, although I probably should have. The trouble is that error messages returned by web
servers can vary considerably, so automatically detecting such errors is a bit of a task. Another
error commonly returned is due to the fact that the web servers can detect that the automatic page
retrieval software I am using is not interactive and therefore does not support frames. However, such
errors only introduce a small amount of noise into the centroid. Iterations of centroid generation like
this can be used to increase the size of “stop lists”, that is, words that are ignored by the system.)

"The batch retrieval program that I used, which is the WWW::Search Perl module from the



118

Table 4.7: Centroid of Word Stems Derived from Dmoz’s “/Science/Physics” Category

‘ rank ‘ word stem ‘ score ‘ rank ‘ word stem ‘ score ‘ rank ‘ word stem ‘ score ‘

1 physic 0.20 | 11 research 0.09 | 21 neutrino | 0.07
2 main 0.14 12 energy 0.09 22 support 0.07
3 quantum | 0.11 13 | department | 0.09 | 23 black 0.07
4 plasma, 0.11 14 | information | 0.09 | 24 einstein 0.07
5 theory 0.11 | 15 time 0.08 | 25 laser 0.07
6 particle 0.10 | 16 light 0.08 | 26 vacuum | 0.07
7 science 0.10 17 | experiment | 0.08 | 27 fusion 0.07
8 please 0.10 | 18 group 0.07 | 28 institute | 0.07
9 university | 0.10 | 19 field 0.07 | 29 sec 0.07
10 search 0.09 | 20 hole 0.07 | 30 equation | 0.06

‘ rank ‘ word stem ‘ score ‘ rank

‘ word stem ‘ score ‘

31 space 0.06 | 41 moved 0.06
32 lecture 0.06 | 42 object 0.06
33 course 0.06 | 43 problem | 0.06
34 nuclear 0.07 | 44 list 0.06
35 high 0.06 | 45 port 0.06
36 mass 0.06 | 46 journal 0.06
37 student 0.06 | 47 index 0.06
38 mechanic | 0.06 | 48 menu 0.06
39 data 0.06 49 wave 0.06
40 contact 0.06 50 service 0.06
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I manually examined the first 30 of the Google physics results and found that
they were all either entirely or partially about physics and/or closely related subjects
(e.g. astronomy, astrophysics). A few were pages put together by libraries that listed
physics resources along with other resources, usually about other sciences, and some
of the pages were out of the mainstream, offering alternative theories about physics.

The idea of this methodology is to use the centroid to gather additional materials
about a topic, so it is interesting to see how many of the 264 results were found in
the original set of 1,899 pages. It turns out that not a single one of them were in
the original set. In a way, this is a good thing, in that it shows that this technique
can use the properties of one set of pages to find a set of similar pages. Also, if you
think about it, there are thousands of pages about physics on the Web, and the Dmoz
editors have only gathered a small sample of them, so it is not likely that given a

page at random, it will be in the Dmoz set.

4.3.4 Results of TFIDF Centroid Computation: Chemistry

There were 1,472 Dmoz pages in the chemistry category, of which 1,379 were success-
fully retrieved from the Web. These latter pages were used to compute the centroid.
Table 4.8 shows the top 50 word stems in this chemistry centroid, after removing

stop words. In my judgment, the following 7 words corresponding to word stems

o« ” w

from the list in Table 4.8 are specific to chemistry: “nmr,” “chemistry,” “resonance,”

” W 7«

“corrosion,” “molecular,” “structure,” and “compound.”

Comprehensive Perl Archive Network (CPAN), was only able to dump the first 264 of the 615
results into a file of URLs, which probably had to do with the responsiveness of Google to batch
queries on the day in question, but did not matter, because 264 results are certainly enough for the
purpose of compiling statistics.
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Table 4.8: Word Stems in the Chemistry Centroid Derived from the Dmoz “/Sci-
ence/Chemistry” Category

‘ rank ‘ word stem ‘ score ‘ rank ‘ word stem ‘ score ‘ rank ‘ word stem ‘ score ‘

1 nmr 0.23 | 11 product 0.10 | 21 | instrument | 0.07
2 chemistri | 0.20 12 inform 0.10 22 reson 0.07
3 main 0.15 13 scienc 0.10 23 student 0.07
4 support 0.13 | 14 research | 0.09 | 24 resourc 0.07
5 chemic 0.13 | 15 informat | 0.09 | 25 data 0.07
6 sec 0.13 16 softwar 0.08 26 COrTOS 0.07
7 search 0.12 | 17 depart 0.08 | 27 group 0.06
8 magnet 0.11 | 18 byte 0.08 | 28 outdat 0.06
9 servic 0.11 19 | laboratori | 0.08 | 29 compani 0.06
10 univers 0.10 | 20 contact 0.07 | 30 mail 0.06

‘ rank ‘ word stem ‘ score ‘ rank ‘ word stem ‘ score ‘

31 databas 0.06 | 41 menu 0.06
32 design 0.06 | 42 updat 0.06
33 | copyright | 0.06 | 43 field 0.06
34 | molecular | 0.06 | 44 | compound | 0.06
35 analysi 0.06 | 45 exist 0.06
36 view 0.06 | 46 object 0.06
37 list 0.06 | 47 nav 0.06
38 move 0.06 | 48 bottom 0.06
39 structur 0.06 | 49 index 0.06
40 port 0.06 | 50 faculti 0.06
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I passed the top ten of the words corresponding to the top ten word stems to
Google. (None of these word stems were on the stop list). This gave 40 results. I
examined these results manually, and all of them are about chemistry, in total or in
part, or closely related fields. Because of the heavy use of techniques from physics in
chemistry, specifically NMR (nuclear magnetic resonance), the chemistry pages are

more likely to have content about physics than vice versa, it appears.

4.3.5 Results of Classifying Search Engine Output with Naive
Bayes

When I use only the top five words in the list in Table 4.8 as a query to Google, this
increases the number of results to over 7,000, and again, they appear to be mainly
about chemistry. I used the batch program to pull the top 500 URLSs from this list. If
I do the same thing for the physics keywords, I get over 9,000 results, again apparently
mainly about physics. 1 used the batch program to pull the top 500 from this list as
well. This gives us two sets of the same size that we can compare with Naive Bayes
to see how well they fall into the two sets.

Unlike the other experiments on the chemistry and physics data sets described
in this thesis, in which Naive Bayes and variant algorithms were used to see how
well pages were classified into sub-categories within the categories of chemistry and
physics, here we simply want to use the two relatively coarse-grained categories of
chemistry and physics as our two categories for classification, and compare classifi-
cation scores for three groups of pages: (i) pages in training sets of chemistry and

physics pages drawn from the Dmoz sample, (ii) pages in test sets of the chemistry
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and physics pages from that sample (what is left over after removing the training
sets), and (iii) the additional pages that were gathered from the Web. Here, we
are developing a single Naive Bayes classifier to discriminate between chemistry and
physics pages.

For the Dmoz pages, I selected 75 percent of the pages at random in each case for
each training set, and the remaining 25 percent for each test set. Since there were
1,375 pages in the chemistry set (after ignoring pages that were not retrieved from
the Web or contained no text other than stop words), this meant there were 1,108
pages in the training set and 347 in the test set. Similarly, for the physics pages, since
there were 1,799 pages, there were 1,337 pages in the training set and 442 in the test
set. Overall, therefore, the training set for the two-topic classifier therefore contains
1,108+4-1,337=2,445 pages, and the training set contains 347+4442=789 pages.

Of the 500 results that Google found from the top-five word stems for each of the
chemistry and physics centroids, I was able to actually retrieve from the Web 446
pages for chemistry that contained meaningful text (other than stop words) and 449
pages for physics.

I used Naive Bayes to train a single classifier that discriminates between pages in
the Dmoz physics and chemistry sets. I also tested this classifier on the pages that
were returned by Google for physics and for chemistry using the top-five words in
each respective centroid as a query string. This procedure is given in pseudocode in
Figure 4.6. The performance on Naive Bayes for this classifier for the training and
test sets from Dmoz and the test set from Google are summarized in Table 4.9.

What is fascinating here is that the performance on the Google test pages is actu-

ally better than that on the Dmoz test pages. Using the top five words is somewhat
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Figure 4.6: Discriminating between Two Topics using a Naive Bayes Classifier, and
Using this Classifier to Classify Search Engine Output using Top Words from a TFIDF
Centroid for Each Topic

1.

Divide a set of pages from Dmoz on a particular topic (e.g. Physics) into training
and test sets.

. Do the same for a set of pages from Dmoz on a second topic (e.g. Chemistry).

Create a training set which is the union of the training sets from (1) and (2)
above; similarly for the test set.

Create a two-class Naive Bayes classifier for these two topics using this training
set, which classifies pages into either one of these classes.

Report performance for this classifier on the 4 sets (2 training, 2 test) in (1)

and (2).

For the first topic (using the pages in the training set), compute the normalized
TFIDF centroid (as described in Figure 4.5). Do the same for the second topic.

For the first topic, retrieve a set of n pages from a search engine (e.g. Google)
using the top-five words from the normalized TFIDF centroid. Do the same for
the second centroid.

Use the two-class Naive Bayes classifier to see how well these pages returned by
the search engine are classified back into the correct one of the two categories.
(Here, we assume that each set of search engine results accurately belongs with
the respective topic.) Report performance statistics for each set of n pages
retrieved in (7) above.
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Table 4.9: Naive Bayes Performance in Discriminating between Chemistry and
Physics on Dmoz Training and Test Sets and on Google Results

size | number correct | percent correct
all pages Dmoz training set | 2365 2111 89.3
Dmoz test set 789 602 76.3
Google test set 895 783 87.5
physics pages only | Dmoz training set | 1337 1119 83.7
Dmoz test set 442 289 65.4
Google test set 449 363 80.8
chemistry pages only | Dmoz training set | 1028 992 96.5
Dmoz test set 347 313 90.2
Google test set 446 420 94.2

similar to using a decision tree algorithm in which the words that are best at dis-
criminating a set from the background or from other sets, and apparently, at least in
this case, this is a very effective way of finding additional pages that are on topic, at
least in the “opinion” of the Naive Bayes algorithm. Of course, as I have noted, the
mathematics of Naive Bayes and of computing the centroid are similar, so it should
not be that much of a shock—what I am doing here is somewhat circular. Neverthe-
less, it would be useful in practice, as a meta-search-based methodology for locating
additional pages about a particular topic, especially if one is not planning on building
a reverse-keyword index search engine of one’s own with full coverage of the Web and

therefore cannot classify pages as they come into that search engine.

4.3.6 Hypothesis

A TFIGF centroid of a set of pre-classified pages can be useful in finding words to

pass to search engines to find additional pages in the same class (category).
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4.3.7 Method

I also tried the TFIGF method described at the beginning of this chapter to compute
the centroid. If the word stem does not appear in the global corpus at all, I assign
it a global frequency of 0.5, so the TFIGF value does not become undefined. These
words are the most characteristic of all (although there is sometimes a problem with
misspelled words or odd neologisms.) The vector is then normalized in the usual
manner, and the centroid is computed from all of the TFIGF vectors. This process
is detailed in Figure 4.7. T have performed this process for the chemistry and physics

sets we have been discussing.

4.3.8 Results of TFIGF Centroid Computation: Physics

The results for the physics set are given in Table 4.10.

In my judgment, the following 20 words corresponding to word stems in the TFIGF

7 beN13

centroid shown in Table 4.10 are tightly related to physics: “electric,” “atomic,” “rela-
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tivistic,” “dirac,” “physics,” “tokamak,” “oscillation,” “schwarzschild,” “boson,” “space-
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pira,” “aps,” “iop,” “lorentz,
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time, superstring,” “qcd,” “positron,” “hamiltonian,”
“baryon,” and “muon.” (“APS” stands for American Physical Society, “PIRA” for
Physics Instructional Research Association, and “IOP” for the Institute of Physics:
the other words are terms commonly understood by physicists). This is somewhat
more than the 13 words that I found for the TFIDF centroid, but of course this is
a subjective assessment. However, this gives some evidence, in my opinion, that the

TFIGF method is better at identifying words specific to a topic.
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Figure 4.7: Computing the Normalized TFIGF Centroid of a Set of Documents D

1. For each wordstem w that appears somewhere in D, let countglobal(w) be the
number of times that w appears in all the positions in a global corpus (this
corpus consists of a large sample of random pages from Yahoo!). If w is not
present in the global corpus, set countglobal(w) = 0.5.

2. For each document d; in D:

(a) For each wordstem w in d;, let countdoc(w) be the number of times w
appears in D. Let

countdoc(w)

TFIGF, =
GFy(w) countglobal (w)

3. (normalization step) For each document d; in D,

(a) For each wordstem w in d; and for each wordstem wy, in d; let

TFIGFy(w)

TFIGFy(w) = VE k(T DIGF, (wy))?

(b) Represent d; by a vector consisting of the TFIGFy(w) for all w in d;.

4. Let ¢ =), d; be the non-normalized centroid vector of the d;, where the d; are
in their (normalized) vector representations.

5. For all components c; of ¢, let rss(c) = />;(c;)%. Redefine ¢, the normalized

centroid vector, as ¢ < rssc(c), and return it.
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Table 4.10: Centroid Computed from Dmoz Physics TFIGF Vectors

| rank | word stem | score | rank | word stem | score | rank | word stem | score |

1 educat 0.30 | 11 assocati 013 | 21 oscillat 0.07
2 online 0.25 | 12 office 0.12 | 22 official 0.07
3 engineer | 0.23 13 arxiv 0.11 23 optical 0.07
4 electric 0.21 14 issue 0.11 | 24 | employment | 0.07
) update 0.19 15 dirac 0.13 | 25 unite 0.06
6 internat 0.18 16 october 0.09 | 26 main 0.06
7 atomic 0.17 | 17 physics 0.08 | 27 pira 0.06
8 relativist | 0.16 | 18 activiti 0.08 | 28 | schwarzschild | 0.06
9 equation | 0.15 19 tokamak 0.07 | 29 boson 0.06
10 archive 0.14 | 20 | adminarxiv | 0.07 | 30 spacetim 0.07

| rank | word stem | score | rank | word stem | score |

31 phy 0.06 | 41 qcd 0.05
32 aps 0.05 | 42 equipment | 0.05
33 iop 0.05 | 43 positron 0.05
34 lorentz 0.06 44 | hamiltonian | 0.05
35 internal 0.05 | 45 schrdinger | 0.05
36 persist 0.05 46 observat 0.05
37 superstr 0.05 47 muon 0.04
38 | annoucement | 0.05 48 weizmann 0.04
39 explorer 0.05 | 49 baryon 0.04
40 explore 0.05 | 50 science 0.04
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4.3.9 Results of TFIGF Centroid Computation: Chemistry

The centroid computed for the chemistry pages using the TFIGF method is given in
Table 4.11.

Table 4.11: Centroid Computed from Dmoz Chemistry TFIGF Vectors

| rank | word stem | score | rank | word stem | score | rank | word stem | score |

1 educat 022 | 11 official 0.12 | 21 sec 0.08
2 update 0.28 12 equipment | 0.12 22 unite 0.07
3 nmr 0.21 13 acs 0.11 | 23 fid 0.07
4 online 0.20 14 informat 0.10 | 24 outdat 0.07
5 engineer 0.19 | 15 archive 0.10 | 25 | chemistry | 0.07
6 internat 0.16 | 16 | employment | 0.10 | 26 main 0.07
7 electrochem | 0.16 17 atomic 0.10 | 27 availabl 0.06
8 organic 0.15 | 18 october 0.09 | 28 | admission | 0.06
9 office 0.13 19 explorer 0.09 | 29 unavail 0.06
10 associat 0.13 20 inaccur 0.08 30 nav 0.07
‘ rank ‘ word stem ‘ score ‘ rank ‘ word stem ‘ score ‘

31 chemi 0.06 | 41 bottom 0.05

32 include 0.06 | 42 peptid 0.05

33 decoupl 0.06 | 43 chemistrycoach 0.05

34 potentiostat | 0.06 | 44 bruker 0.05

35 banner 0.05 | 45 issue 0.05

36 activiti 0.05 | 46 cas 0.05

37 temporarili 0.05 | 47 chiral 0.05

38 ordere 0.05 | 48 | chromaticographic | 0.05

39 persist 0.05 | 49 chemweb 0.04

40 | announcement | 0.05 | 50 correctli 0.04

In my judgment, the following 12 words corresponding to the word stems in
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Table 4.11 are directly about chemistry: “nmr,” “electrochemical,” “organic,” “acs,

bAANA4

“fid,” “chemistry,” “potentiostat,” “peptide,” “bruker,” “cas,” “chiral,” and “chromato-
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graphic.” “ACS” stands for the American Chemical Society; “FID” is a term relating
to NMR, “CAS” is the Chemical Abstracts Service, and Bruker is a manufacturer
of scientific equipment, including NMR machines. These 12 words are a larger set
than those that I judged to be directly about chemistry from the TFIDF top 50 word

stems, but again, this judgment is subjective.

4.3.10 Hypothesis

A list that combines wordstems from both the TFIDF and TFIGF would contain

more topical keywords than either the TFIDF or TFIGF centroids alone.

4.3.11 Method

The best performance, I found, was obtained by combining the TFIDF and the TFIGF
results in the following manner. For each word stem, its ranks on each of the TFIDF
and TFIGF centroid vector lists, sorted by TFIDF or TFIGF score in a descending
manner, were summed. If a particular word stem was not found on one of the lists,
it was considered to be at the end of the list for purposes of computing its rank on
that list. The details of this process are given in Figure 4.8. Doing this significantly

boosted the number of words specific to the field found in the top 50, in my judgment.

4.3.12 Results

The result for the physics set is shown in Table 4.12. Scores are omitted because of

the way this computation was done.
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Figure 4.8: Combining TFIDF and TFIGF Results for a Set of Documents D

1. Let crprpr(D) be the normalized TDIDF centroid for a set of documents. Let
nyrrpr be the number of words present in this centroid.

2. Let ¢rprer(D) be the normalized TDIGF centroid for a set of documents. Let
nrrigr be the number of words present in this centroid.

3. Let W be the set of wordstems present in either or both centroids. For each w;
in W:

(a) Let rrprpr(w;) be the rank of w; in erprpr(D); that is, its rank when all
the values in the vector representing the centroid are sorted in descending
order of magnitude; if w;is not present in crprpr(D), then let reprpr(w;) =
(nrrrpr +1).

(b) Let rrrrgr(w;) be the rank of w; in erprer(D); that is, its rank when all
the values in the vector representing the centroid are sorted in descending
order of magnitude; if w;is not present in cyprppr(D), then let rpjap(w;) =
(nrrrgr +1).

(c) Let r(w;) = repipr(w;) + rerrer(w;).

4. Order the wordstems in D based on ascending values of r(w).



Table 4.12: Combined Physics Centroid

‘ rank ‘ word stem ‘ rank ‘ word stem ‘ rank ‘ word stem ‘

1 sec 11 logo 21 tesla

2 quantum 12 | schwarzschild | 22 planck

3 einstein 13 pira 23 ph

4 left 14 lorentz 24 neutron
5 cern 15 synchrotron 25 beam

6 dirac 16 adminarxiv 26 | weizmann
7 vacuum 17 byte 27 banner

8 hep 18 muon 28 header

9 tokamak 19 doit 29 octob
10 fermilab 20 qcd 30 hepic

| rank | word stem | rank | word stem |

31 unabl 41 pppl

32 iop 42 collis

33 proton 43 toolbar
34 bohm 44 bohr

35 bottom 45 cofficici
36 lagrangian 46 | wavelength
37 quant 47 | heisenberg
38 | hamiltonian | 48 nobel

39 kek 49 | physicsweb
40 casimir 50 | schrdinger
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In my judgment, the following 29 words corresponding to the word stems in
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Table 4.12 are directly about physics: “quantum,” “einstein,” “cern,” “dirac,” “vac-
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uum,” “hep,” “tokamak,” “fermilab,” “schwarzschild,” “pira,” “lorentz,” “synchrotron,”
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“muon,” “qcd,” “tesla,” “planck,” “neutron,” “hepic,” “iop,” “proton,” “bohm,” “la-
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grangian,” “hamiltonian,” “kek,” “casimir,” “pppl,” “bohr,” “wavelength,” and “heisen-
berg.” This is considerably more than was found by the TFIDF or TFIGF methods
alone, which found 13 and 20 words respectively, and indicates that a balance between
up-weighting rare words and up-weighting words that appear in relatively few of the
documents in the corpus may be a fruitful approach.

Table 4.13 shows the top 50 combined-rank TFIDF-TFIGF centroid word stems
for the chemistry pages. In my judgment, the following 17 words corresponding to

13

word stems in the list in Table 4.13 are directly about chemistry: “nmr,” “bruker,”
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“spectra,” “potentiostat,” “seaborg,” “varian,” “hornak,” “spectral,” “nqr,” “chemistry,”
“nuclei,” “deuterium,” “tecmap,” “fid,” and “bmrl.”® This is somewhat more than the
12 found by the TFIGF method alone, and significantly more than the 7 found by
the TFIDF method.

Note that the goal of this section of this chapter has been to identify keywords that
are salient to a particular topic, given a corpus of text (here, preclassified pages from
Dmoz) that is on a particular topic (here, chemistry or physics). TFIDF and TFIGF
centroids, and a combined TFIDF /TFIGF technique computed from these centroids,

have been used to identify the salient keywords in this section. This is different

from the goal of Naive Bayes, which is (in the textual context) to classify texts into

8Some of the word stems in table 4.13 correspond to Web-related words coming from error
messages generated by Web servers; it is difficult to weed out all of these messages using stop lists;
the words “outdated,” “unavailable,” “temporarily,” and “correctly” are mainly from these messages.



Table 4.13: Combined Chemistry Centroid

‘ rank ‘ word stem ‘ rank ‘ word stem ‘ rank ‘ word stem ‘
1 nmr 11 spectra 21 doit
2 sec 12 menu 22 | chemistrycoach
3 informat 13 educat 23 byte
4 outdat 14 unavail 24 potentiostat
5 nav 15 support 25 seaborg
6 bottom 16 | temporarili | 26 associat
7 bruker 17 correctli 27 spell
8 banner 18 internat 28 persist
9 header 19 exist 29 nobel
10 header 20 left 30 varian

| rank | word stem | rank | word stem |

31 chemweb 41 chemistri
32 ucsf 42 nuclei
33 chemsoc 43 deuter
34 octob 44 maintain
35 availabl 45 tecmag
36 bhome 46 tripo
37 bodi 47 fid

38 hornak 48 | bookmark
39 spectral 49 bmrl
40 nqr 50 sidebar
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categories based on other, pre-classified pages that have already been manually placed
in those categories.

However, the mathematics of the TFIGF terms that have been used in this section
is somewhat similar to that of the individual probabilities that are used in Naive
Bayes. The difference is that in TFIGF the terms represent the ratio between the
frequency of a given word in a particular document and the global frequency of
that word (see Figure 4.7), whereas in Naive Bayes the terms represent the ratio
between the frequency of a given word in a document that is the concatentation of
all documents classified in that category and the sum of the total number of word

positions in that concatenation and the global vocabulary (see Figure 3.3).

4.4 Review of the Contributions of this Chapter

The first contribution of this chapter, illustrated by the design of the Active Portal
system described in Section 4.1, is mainly a conceptual one. I point out that search
results always should be ranked in terms of the needs of the searcher. A list of
globally-ranked results that contains a collection of pages on semantically unrelated
topics is too noisy, if the searcher is only looking for pages on one of these topics. I
therefore design a mechanism by which pages could be ranked within each particular
topic; such a mechanism requires tuning and possible redesign based on user feedback
(which I have not yet collected), but I argue that it should combine both the use of
words over-represented within the category (via the TFIGF score) and a count of in-
links to each page from other pages within the category (its “authority”™like nature).

In addition, one could add a count of out-links, to measure the “hub”-like nature of
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the page-I have not done this yet. In addition, these factors could be combined in a
recursive manner, like Google does, but again this is a direction for further research.

The experiments I have conducted with Active Portal indicate that spidering off
of pre-classified pages is an effective strategy for locating pages on the same topic;
this is consistant with the results of Chapter 3. This effectiveness was measured
by comparing the results of Active Portal on some topics with some other directory
systems, and with Google.

As an additional experiment with “growing” a tree of pre-classified pages, I em-
ployed a novel multi-resolution version of the the Naive Bayes algorithm, which is
more scalable than Naive Bayes when applied to a large tree of categories. One sig-
nificant contribution was the finding that such an algorithm was effective, compared
to assignment to the most frequent category, in assigning pages back to the correct
branch of the tree, and to a lesser extent, to the same precise category. Another
significant result/contribution here was the finding that the greater initial semantic
separation of the categories led to better performance; thus I found that the algo-
rithm did a better job separating pages taken from the top-level Dmoz categories,
which are widely divergent in topic, as opposed to the closely-related pages within
the “/Science/Biology” tree. I also found that pages spidered off of pages in these
categories were also classified back into the categories at a rate higher than what you
would expect if you just assigned pages to the most frequent category.

The final main contribution of this chapter is the idea of mining highly salient
keywords from the TFIDF or TFIGF centroids of sets of pages and passing sets of
those keywords to search engines in order to identify additional pages in the category.

I demonstrate that such a method is good at identifying salient keywords—a method
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involving a combination of TFIDF and TFIGF appears best of all-—and the results
returned by Google to searches using these keywords result in a large proportion of
pages that belong to the category, according to Naive Bayes. This would indicate

that this is an effective method of finding more pages on a particular topic.
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Chapter 5

Using Feedback to Find Better

Results

5.1 Models of Web Page Quality and Relevance

In the information retrieval literature, relevance is usually thought of as a Boolean
value—either the result is relevant, or it is not. In classic studies of relevance feedback,
a set of results to a query are presented to the user, and the user marks some of these
as relevant or non-relevant. Terms drawn from those documents tagged as relevant
are used to refine the query. This has been shown to improve the precision of retrieval
(that is, the percentage of documents returned that are relevant), e.g. in [98, 107].
Precision and recall are useful concepts when you have a fixed number of docu-
ments that fit into any category. In that case, as is conventional in the literature,
precision is defined as a the percentage of the retrieved documents that fall into the

desired category (that is, are relevant to a particular information need, as defined by
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the user or a predefined expert assignment), and recall is defined as the percentage
of the relevant documents that have been retrieved. In the Web context, where the
number of documents in any particular category tends to grow monotonically over
time, achieving high precision (so as to have a low signal-to-noise ratio for the user)
and finding a large number of highly relevant documents, and ranking them well, is
more important than having high overall recall, since most users will not be able to
process any but the most highly relevant documents. Thus precision usually becomes
more important than recall, since there is usually a flood of information on any topic,
more than any one person can process. Recall is important in that you want to make
sure that the most relevant documents are included in the set. The distribution of

relevance judgments and the theory of such judgments has been examined in [8].

5.1.1 Hypothesis

The presence of TFIGF keywords in and /or a count of in-links to a document can pre-
dict whether or not that document receives high quality or relevance (to a particular

topic) ratings from a pool of subjects.

5.1.2 Method

In the interest of discovering what features contribute to high levels of precision and
high mean relevance of returned documents, I conducted the following experiment.
I used a set of 500 documents which I manually-selected, all on public policy topics
related to Wisconsin, 100 each on the following topics: Wisconsin economy, Wis-

consin education, Wisconsin environment, Wisconsin government and politics, and
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Wisconsin health care. (These were the same pages used in the experiment reported
in Section 3.1.)

A group of 107 student-subjects were used in the experiment, all students of Prof.
Jo Ann Oravec at the University of Wisconsin at Whitewater. Each student was
assigned to one of the categories, and was asked to rate each page in that category
along two dimensions, relevance and quality, each scaled between 1 and 10. The
students were instructed that relevance simply meant to what extent the page fit into
the category in question, and quality meant the overall quality of the information on
the page, independent of the relevance of the page to the category. (So, for instance, if
one of the pages in the Wisconsin education set actually contained very high quality
information on, say, California wineries, it would get a relevance value of 1 and a
quality value of 10.)

The subjects were each assigned to make 100 relevance and 100 quality judgments
of the 100 pages in the set to which they were assigned. In aggregate, the subjects
made 8,982 relevance judgments and 9,013 quality judgments, indicating that they
actually completed (on average) about 83 judgments of each kind in each category.
Therefore, on average, since there were 500 pages total evaluated, there were are
about 18 judgments of each page on each of the two dimensions. (Actually, since only
492 documents were responding to Web queries during the period of the experiment,
although all of them were responding when I constructed the list, the number of judg-
ments per document was very slightly higher.) The quality and relevance variables
were correlated with one another at 0.747, meaning either one accounted for about
55.8% of the variation in the other. Table 5.1 shows the mean and standard error

of the user judgments of quality and relevance of the documents in each of the five
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categories.

Table 5.1: Descriptive Statistics, Relevance and Quality Judgments, Wisconsin Policy
Topics

relevance quality
Policy Area | # subjects | # ratings | mean | sd | # ratings | mean | sd
Economy 23 1699 5.72 | 2.72 1703 5.41 | 2.66
Education 22 1809 5.68 | 2.50 1814 5.31 | 2.53
Environment 22 1925 5.87 | 2.36 1931 5.19 | 2.48
Govt./Politics 20 1777 5.75 | 2.40 1785 5.00 | 2.49
Health Care 20 1772 5.90 | 2.74 1780 5.47 | 2.65
Total 107 8982 5.79 | 2.55 9013 5.27 | 2.56

As one can see from Table 5.1, all of the categories have quite similar distributions,
at least as far as the means and standard deviations are concerned. The ratings for
relevance are systematically, but only slightly, above those for quality.

Manual consideration of the pages after they were ranked by mean subject led
me to the following conclusions about the behavior of the subjects. The subjects
tend to rate highly for relevance those pages which are associated with high-status
or highly-socially-visible institutions. For instance, the top 6 pages in terms of mean
subject relevance ranking in the “government and politics” category are all home pages
of state agencies (the Wisconsin Department of Natural Resources, Department of
Justice, Office of the Governor, Department of Commerce, State Legislature home
page, and the Wisconsin Department of Financial Institutions.).

In the case of the health care pages, the top six pages were pages associated with
the University of Wisconsin Hospital (perhaps the most prestigious hospital in the
state), Blue Cross/Blue Shield of Wisconsin (perhaps the best-known health insurer),

the Medical College of Wisconsin (Wisconsin’s other medical school, besides that at
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the University of Wisconsin, and also very well-known in the state), Community
Health Care of Wausau (not that well-known outside Wausau, but a beautifully-
designed site), the Wisconsin branch of the March of Dimes (a very well-known orga-
nization), and another page associated with the Medical College of Wisconsin. What
many of these top pages have in common is that they are associated with very well-
known organizations and are very nicely-designed, probably because these institutions
have the resources to hire professional graphic artists and Web page designers. On
the other hand, those with lower relevance scores tend to be associated with less
prestigious or well-known organizations and to not be as well-designed, based on my

browsing through the results.

5.1.3 Keyword Models

I built OLS (ordinary least-squares) regression models to attempt to account for the
subjects’ ratings in terms of the presence or absence of over-represented words on a
particular page, and the total number of over-represented word stems (based on their
TFIGF score). In an OLS regression, the regression coefficients are calculated by
minimizing the sum-squared distance between the regression line and the data points
[47]. So, for instance, in a multiple regression of one dependent variable y on three

independent variables 1, zo, and x3, we have a regression equation of the form

y = Bo + fix1 + Bz + Pixy + €

where the 3; are the regression coefficients and ¢ is the error term. For all the values

y;of y, we have a corresponding ¢;, and the ;are estimated by minimizing the sum-
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squared value of the ¢;.

Tables 5.2 and 5.3 show the top 100 over-represented word stems for each of the
five categories, in the order of their degree of over-representation relative to a large
corpus of random background text. This is equivalent to sorting by descending TFIGF
score and then selecting the top 100.

I suspected that the presence or absence of these over-represented word stems on a
particular Web page might be related to the subjects’ judgments of the page’s quality
or relevance. However, this turned out to largely not be the case. For each of the
five categories, I created two models, for a total of ten models. In each model, the
presence or absence of each of the top 25 words in each of the lists in Tables 5.2 and
5.3 was coded as an independent dummy (zero for absent, one for present) variable
in an OLS multiple linear regression, and the quality or relevance was the dependent

variable. These models had the following form.

5.1.4 Results of Keyword Models and Discussion

When the OLS model is estimated, the statistical software estimates a 95 percent con-
fidence interval for each regression coefficient (beta). This means that the probability
is 95 percent that the true beta lies in this confidence interval. A beta is significantly
different than zero if the entire confidence interval lies on one or the other side of zero;
in those two cases, one can be reasonably confident that the true beta is positive or
negative.

Very few of the word stem dummies in these multiple regressions had betas that
were significantly different than zero, leading to the suspicion that those that were

significantly non-zero occurred by chance, given the large number of variables in the
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Table 5.2: Top 100 Over-Represented Word Stems, Wisconsin Policy Areas (Economy,
Education, and Environment)

Category

Top 100 Over-Represented Word Stems

economy

wisconsin, state, develop, busi, econom, work, research, job,
industri, program, economi, studi, year, impact, service, thi,
madison, counti, univers, report, product, worker, employ,
nation, percent, system, educ, center, school, high, tech-
nolog,area, million, resourc, tax, public, commun, milwauke,
fund, train, provid, manufactur, depart, compani, health, in-
creas,peopl, wi, support, local, includ, time, student, feder,
technic, workforc, cost, labor, inform, make, project, skill,
base,incom, growth, region, welfar, govern, institut, benefit,
visitor, manag, american, recreat, opportun, famili, creat,
care,rate, agricultur, total, plan, relat, annual, gener, bio-
scienc, home, wage, number, colleg, chang, uw, polisci, futur,
top, investrequir, medic, life

education

school, wisconsin, state, educ, program, student, educat,
public, colleg, teacher, wi, univers, high, milwauke, dis-
trict,technic, court, work, home, system, madison, develop,
year, children, associat, mpcp, parent, area, amend, privat,
learn, nation, site, commu, depart, standard, technolog, in-
clud, skill, uw, resourc, center, provid, counti, make, fax,
question,choice, particip, scienc, offic, curriculum, thi, gov-
ernor, support, requir, institut, people, servic, project, art,
teach, middle,board, council, religi, plan, inform, report, in-
struction, level, establish, train, elementari, librari, activ,
claus, busi, law, extension, studi, test, fund, administr, op-
portun, career, grade, local, time, social, people, purpose, life,
effect, web,workforc, benefit, base, thompson, education

environment

wisconsin, water, environment, state, program, resourc,
lake, river, manag, site, land, al, environ, develop, natur,
sourc,transport, area, qualit, year, pollut, pcb, depart, in-
clud, concentr, fish, protect, project, public, nation, system,
feder, contamin, agricultur, work, plan, plant, wi, commun,
requir, trade, report, issu, great, point, thi, regul, cryp-
tosporidium,epa, energi, time, polici, madison, local, million,
univers, nonpoint, research, control, inform, conver, gener,
provid, impact,support, studi, industri, speci, wast, law, act,
mine, group, anim, effect, fund, educ, increas, counti, altern,
watersh, activ,base, reduc, peopl, wildlif, home, level, prod-
uct, carp
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Table 5.3: Top 100 Over-Represented Word Stems, Wisconsin Policy Areas (Govern-
ment /Politics and Health Care)

Category

Top 100 Over-Represented Word Stems

government
and politics

wisconsin, state, counti, govern, polit, public, citi, tax, parti,
site, madison, republican, local, campaign, year, depart, ser-
vic,inform, democrat, work, web, time, governor, district,
thompson, vote, elect, peopl, home, wi, senat, milwauke,
feder, court, legisl, reform, nation, candid, informat, program,
make, monei, committe, thi, mail, law, search, resourc, green,
univers, congres, report, issu, school, member, lafollett, town,
student, board, contact, gener, legislatur, system, commun,
budget,meet, interest, tommi, includ, support, dai, narrat, re-
lat, busi, group, office, dave, progress, hous, list, bill, repres,
commiss,health, tim, citizen, plan, polisci, famili, offic, col-
leg, record, call, find, presid, financ, provid, industri, offici,
educat

health care

health, wisconsin, care, state, tobacco, program, servic, prod-
uct, provid, public, inform, hospit, medicaid, nicotin, re-
search,medic, percent, smoke, compani, commun, data, chil-
dren, insur, home, year, center, patient, includ, counti, famili,
group, wi, system, madison, market, long, cigarett, nation,
clinic, plan, physician, defend, report, depart, polisci, infor-
mat, thi, base,manag, term, rate, develop, gener, md, time,
increas, studi, network, fund, effect, site, industri, school, as-
sociat, support,continu, cost, nurs, milwauke, diseas, institut,
requir, level, length, area, result, feder, work, peopl, univers,
resourc, relat,administr, number, grant, make, issu, project,
cancer, person, popul, order, access, addict, contact, benefit,
ag, part, agent, primari
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regressions.

However, for the record, here is a list of those word stems in each category that
did have dummy betas significantly different from zero: the word stem “Wisconsin” in
the model for relevance in category 1; the same word stem, for quality, in category 1;
the word stem “wi” (the postal abbreviation for Wisconsin) in the model for relevance
in category 2, and again for quality in category 2; the word stem “home” for quality
in category 2 (but not for relevance); no word stems for either quality or relevance
for category 3; the word stem “site” for both quality and relevance in category 4; the
word stem “parti” for relevance in category 4 (but not for quality); and the word stem
“research” for category 4 for relevance (but not for quality). This represents 9 word
stems with significant betas out of a total of 25 x5 = 125 keywords tested tested in 2
models each, for a possible 250 relationships. 9 out of 250 (3.6 percent) is not a very
impressive number, and is probably around the number one would expect by chance,
especially since there appears to be nothing special about the keywords that do have
non-zero correlations. So I have not demonstrated any ability of overrepresented
keywords to predict quality or relevance evaluations by subjects. It is likely that
subjects are doing something much more sophisticated in their evaluations than what

such models capture.

5.1.5 Results of Models Based on Length and Content

I also created six univariate regression models, attempting to predict the quality or
relevance of a page based on the page’s raw length in bytes (as downloaded from
the Web) (two models here), the number of unique word stems on the page (two

more models here), and the number of the top 100 overrepresented word stems that
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the page contained (two more models here), on the theory that more complex pages
might earn higher relevance or quality scores. Here, each of these models had either
the quality or relevance as the dependent and one of the other three variables as
an independent variable. The formulation of a OLS univariate regression model is
similar to that of a OLS multivariate regression as described above, however, there is
only one independent variable. However, the system still minimizes the sum-squared
differences between the predicted (model) and actual (sample) values. This is an
example of a simple OLS regression equation of one dependent variable y on one

dependant variable z:

y=Po+bix+e

The residual ¢ represents the difference between the predicted value and the actual
value.
However, none of the six models I created had betas that were significantly differ-

ent from zero.

5.1.6 In-link Model Contruction, Results, and Discussion

I also created two OLS regression models in which the total number of in-links (from
all 492 pages in the set itself) to a given page was used to predict the mean subject
quality or relevance of each page. Here, the models for the five categories could be
combined into one, because all of the variables are uniform across the five sets. 1
found a very weak effect here. For the relevance model, the beta was 0.07, but this

was significantly different from zero (in terms of a 95 percent confidence interval; that
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is, the entire 95 percent confidence interval was above zero); however, the adjusted
r-squared of the model was 0.015. The adjusted r-squared is a measure of the share
of the variance that is accounted for by the model. For the quality model, the beta
was 0.06, but again it was significantly different from zero (again, in terms of a 95
percent confidence interval); the adjusted r-squared value was 0.010.

Another proxy for the number of in-links into a page is the total number of in-links
reported by the various search engines. A good proportion of the search engines have
a query format that allows you to get the number of pages pointing into a given page
and a list of the pages. For the 492 pages in the Wisconsin policy group, I found the
number of in-links given by Altavista and by Google. Google reported that 206 of
the 492 pages had a positive (that is, greater than zero) number of in-links; Altavista
reported 231 of the 492 pages as having a positive number. Note that in both cases,
this represents a minority of the pages as having in-links. This could be due to two
factors; that these pages do not really have any pages pointing to them, or that the
search engines are doing an imperfect job of spidering (which is almost certainly the
case). It is actually hard to tell which, because a search engine needs a starting point
to spider, and if there is a clique of pages that is disconnected from the rest of the
Web, it may take some time for this clique to have a pointer off of a page that the
engine already knows about.

In the case of both Google and Altavista, an OLS regression model based on an
independent variable which was the log of the number of in-links performed better
than a linear model based on the number of in-links. This is likely due to the fact
that in-link distributions are likely to (approximately) follow Zipf’s law, which pre-

dicts a hyperbolic distribution; taking the log of the number of in-links flattens this
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distribution, which will work better with a linear regression. The model based on a

linear dependent variable is as follows:

Relevance(page) = 1 Inlinks(page) + By + €

The model based on a log dependent variable is as follows:

Relevance(page) = Brlog(Inlinks(page)) + o + €

Inlinks(page) is as reported by either Google or Altavista; separate linear and
log models are estimated for each search engine, for a total of four models.

In the case of the Altavista log model predicting mean subject judgments of page
relevance, the beta, estimated at 0.23, was significantly different from zero, and the
adjusted r-squared value was 0.11. The respective numbers for the Altavista linear
model were 0.00016 and 0.017. For the Google log model, the values were 0.24 and
0.13. For the Google linear model, the numbers were 0.00040 and 0.058. Each of
the 95 percent confidence intervals for each of the betas in these models was fully
above zero. So, the Google log model did best in accounting for variance in subject
judgments of page relevance, although only slightly better than the Altavista log
model, and probably not significantly so. For the log models, the observations with
zero in-links were dropped, since they have undefined logs, so I also dropped these
observations in the linear models to make them comparable.

For the prediction of page quality (rather than relevance; otherwise, the models
take the same form as above), the numbers were as follows: for the Altavista log

model, a beta of 0.30 and an adjusted r-squared of 0.15; for the Altavista linear
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Table 5.4: Linear and Log Models Relating Page In-Links to Subject’s Mean Judg-
ments of Quality and Relevance

Search Engine | Dep. Vari- | Indep. Vari- | Beta | Adj. R-squared
able: Lin- | able:  Qual-
ear/Log Page | ity/Relevance
In-links
Altavista Log Quality 0.23 0.11
Altavista Linear Quality 0.00016 0.017
Google Log Quality 0.24 0.13
Google Linear Quality 0.00040 0.058
Altavista Log Relevance 0.30 0.15
Altavista Linear Relevance 0.00020 0.024
Google Log Relevance 0.31 0.12
Google Linear Relevance 0.0052 0.061

model, 0.00020 and 0.024; for the Google log model, 0.31 and 0.12; and for the the
Google linear model, 0.0052 and 0.061. Again, each of the 95 percent confidence
intervals for each of the betas in these models was fully above zero. So, again, in this
case, the Google log model performed slightly better than the Altavista log model.
But all these numbers are quite similar to the numbers that were found for page
relevance, which is not surprising given the high level of correlation between quality
and relevance. All these regression results for quality and relevance are summarized
in Table 5.4.

The adjusted r-squared values for the four log models mentioned above range
between 0.11 and 0.15. Although the relationships are significant based on the con-
fidence intervals of the betas, this is not a particularly impressive accounting for the
variance in the relevance or quality scores. Thus a ranking based on pure in-links does

not do a good job in reflecting subjects’ judgments of placements into a particular
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category. This is not surprising, because these all in-links from all other pages on the
Web that the search engine knows about, not just those specific to the category.

Google’s strategy is not likely to be much better with respect to a particular
query, even though it is more sophisticated than the raw number of in-links, but
measures something akin to the total network inflow to a page. This is because it
must combine this PageRank value with a standard keyword-based ranking, unrefined
keyword queries are not likely to produce high precision or recall, and the PageRank
value is global to all pages on the Web, so it is not relative to the query. But, of
course, pages need to be ranked differently depending on what the query is.

There is a strong correlation between the number of in-links reported by Altavista
and those reported by Google to these 492 pages. The correlation is 0.868 (between
the linear measures) if the zero in-links are kept, and 0.870 if they are dropped. The
correlation between the log measures (with the undefined (log zero) values dropped)
was 0.737.

The mean number of in-links reported by Altavista to the 492 pages in this set
was 134.6, but this mean is high because of the highly skewed distribution of in-links
per page. For instance, the median number of in-links is zero, because over half the
pages have no in-links that Altavista knows about. The number of in-links at the
75th percentile is only 25. However, the page with the largest number of in-links has
12,967! If you drop the pages with zero in-links, the mean rises to 286.7 (and the
number of observations drops from 492 to 231).

For Google, the mean number of in-links was 95.2. As in the case of Altavista,
the median was zero. The number of in-links at the 75th percentile was 42.5, and

the maximum number of in-links was 3950. (The page with the maximum number of



151

Table 5.5: In-Link Statistics for the Wisconsin Policy Pages, as Reported by Altavista
and Google

Altavista | Google
Number of Pages with One or More In-Links (of 492) 231 206
Mean In-Links 134.6 95.2

Mean In-Links excluding Pages without In-Links 286.7 227.3
In-Links at 75th Percentile 25 42.5

Maximum In-Links 12,967 3950

in-links was not the same in each case). If you drop the pages with zero in-links in
this case, the mean rises to 227.3 (and the number of observations falls from 492 to
206).

These data about the two search engines are summarized in Table 5.5.

So, given the fact that Google has both more pages for which it does not know any
in-link, and a lower mean for the remaining pages, it appears that Altavista has better
coverage of at least this (Wisconsin policy-related) section of the Web. This is gives us
a hint of how one might compare the coverage of search engines, since they certainly
cannot be taken at their word (and certain factors, such as the high prevalence of
dead links and dynamically-generated pages, make a comparison of counts difficult,
since each search engine is likely to use a different counting method). Running a
similar experiment with randomly selected pages (rather than the manually-selected
ones used in this case) might give a better method for comparing the coverage of
search engines. However, it is difficult to find a truly random selection of pages,
because all such sets have to be drawn from an existing database (e.g. search engine
or directory), which is likely to be biased in its representation of the Web as a whole.

It is also likely that there is a correlation, perhaps a strong one, between the



152

relevance and quality scores of pages and those of the pages that they link to; it would
not be difficult to collect such data, but I have not yet done so. Such correlations
would be useful in determining where to place new pages spidered off of an existing
set, of pages that have already been placed in a category, by using the quality or

relevance of the linking pages to predict the quality or relevance of the new page.

5.2 Review of the Contributions of this Chapter

This chapter differs from the rest of the chapters in this thesis in that it makes use
of data drawn from sample subjects. Direct measurement of subjects’ judgments of
quality and relevance on a set of pages on particular topics represent a good proxy
for how subjects would rank those pages. Ideally, if one could predict the mean value
of the quality and/or relevance to a topic of a particular page, one would know where
to rank it relative to others.

The first two contributions in this chapter are negative ones. [ was not able
to predict quality or relevance of pages using a vector of dummies representing the
presence of each of the 25 most salient keywords in a group, ranked by TFIGF score.
Neither was I able to do so using the size of the pages, the number of the top 100
most salient keywords, or the number of unique keywords.

The final contibution was more positive, although the effect was weak. I showed
that the log of the number of in-links was a significant predictor of the mean quality
or relevance scores, although the models accounted for only between approximately
11 and 15 percent of the variance in the dependant variable. The effect may possibly

be amplified by trying other models, but the more models one tries, the more one is
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guilty of data mining.

I suspect that Google PageRank scores would not do much better, although there
is no way to test this, because Google does not release its numerical PageRanks to
the public. Even if the Google PageRank scores did twice as well—which seems
unlikely—they would be accounting for at most 30 percent of the variance. I suspect
much higher-level processes are involved in the assessment of Web pages by human
subjects, such as the design of the page, the prestige of the person or institution
producing it, and more complex linguistic processing of its content.

The main contribution—and point—of this chapter is that there is a lot of room
for improvement in page ranking schemes, since in-link counts constitute a major com-
ponent of the way that it is done now, and they do not correllate well with subjects’
rankings. Combining the empirical methodology of this chapter with experiments
in ranking techniques such as those employed by Active Portal (and improvements
thereupon) found in Chapter 4 could be a potentially fruitful line of research in de-
veloping optimal page ranking techniques. This, however, has to be combined with
techniques for semantic separation through classification or clustering, as discussed

in Chapters 3 and 6 respectively.
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Chapter 6

Clustering Web Pages

In this chapter I investigate the clustering of Web Pages. Clustering is an unsu-
pervised technique of associating related items, while classification is a supervised
technique. While human supervision, which often involves providing labelled exam-
ples of classes, often provides better results, there is much that can be accomplished
without supervision. The Web provides much implicit human intelligence in terms of
the link structures between pages; two pages that are linked are much more likely to
be semantically linked than two randomly-selected unlinked pages. This link infor-
mation, as well as the text on the pages themselves, can be usefully mined to impose
further organization on the Web.

In this chapter, I examine several approaches to Web page clustering. First, in
Section 6.1, T examine the idea of using, as clusters, connected components of the Web
viewed as an undirected graph, after pruning out highly-globally-referenced pages that
are unlikely to be on specific, focussed topics. Second, in Section 6.2, I look at the

extent to which WordNet can be used as a tool for clustering Web pages. Third, in
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Section 6.3 T apply HAL-like [17] semantic networks constructed out of the text of

search engine results to the task of clustering these results.

6.1 Connected Components and Web Navigation

In this section, I examine the degree to which connected components of pages on the
Web can be useful as clusters. Initial experiments found that semantically-unrelated
pages tend to be connected through highly-globally-referenced pages, so I computed
a list of these highly-globally-referenced pages and removed them from the sets of
pages that were being clustered before computing the clusters. Since I had this list
of these highly-referenced pages, though, I thought it would be interesting to see if

they follow a Zipf’s law distribution.

6.1.1 Finding Highly-Referenced Pages and Examining a Zipf’s

Law Model

Individual Web sites tend to be organized, when drawn as graphs, like trees or cliques,
or some combination thereof. Even if they are organized as trees, there are often
back links to pages higher up in the tree, or to the home page. Due to the power
law distribution of Web site size [53], a large number of the links on the Web are
links into a relatively few Web sites, such as microsoft.com, netscape.com, aol.com,
yahoo.com, etc. As we will see later in this chapter, identifying these most highly-
referenced sites is helpful in Web clustering, because semantically-unrelated cliques
(connected components) of pages tend to be connected together via globally very-

highly referenced pages.
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As we have seen (for instance, in Section 1.1), a Zipf’s (power) law distribution is a
distribution where the nth highest-ranking item has a frequency directly proportional
to 1/(n¥), where k is an exponent close to one. Other research has examined the
degree to which Web requests from a given user community are distributed according
to Zipf’s law, and the results have been mixed; for a review of this, see [13|. In
addition, based on a large Web crawl, Albert, Jeong, and Barabasi found that the
probabilities Py, (k) and Py, (k) that a given document on the Web has k out-links
and in-links both follow power laws, with exponents k of 2.45 and 2.1 respectively [3].

Here, I examine a related issue: when a set of Web pages are ranked in terms of
their in-link count, do the ranks follow Zipf’s law? I do this because I generated such
a sample of pages for a use in a later section of this chapter, and I thought it would
be interesting to see if the pages followed Zipf’s law, since they were on hand in any

case.

Hypothesis

The most highly referenced pages follow a Zipf’s Law distribution with respect to the

number of in-links each of them has.

Method

In order to determine some of the most commonly referenced sites on the Web, I used
Yahoo!’s random page selector, which (presumably pseudo)-randomly selects a page
out of their hierarchy. At this writing, this selector was found at
http://random.yahoo.com/bin/ryl. While this system does not (in all cases) return

the URL of the page that it returns, one can than follow the unique absolute links



157

off that site. I wrote a program that repeatedly called this selector and then dumped
all of the absolute links it found in each returned file into a big file, until I had accu-
mulated 100,000 links (this was an arbitrary number; I figured this number of links
would reveal at least most of the most referenced ones, if not in the correct order). I
then counted how many times each link was referenced in the list of 100,000.

I attempted, using OLS linear regression®, to fit this list to a Zipf’s Law model;
that is, a model in which the frequency (in terms of in-links) of a particular item
(here, a Web page URL) is directly proportional to the inverse of its rank in the list.

Consider Zipf’s Law:

where ¢ and k are constants, F is the inlink-frequency of each page in the list of pages
ranked by in-link frequency, and n is the rank of each item on the list. Taking the
log of each side, we get:

log(F) = —klog(n) + log(c)

which has a form similar to a regression equation

Yi = biz; + by

where y; = log(F), by = —k, z; = log(n), and by = log(c). Thus I estimate the OLS
linear regression with log(F') and log(n) as the dependent and independent variables,

respectively.

LOLS linear regression is briefly described in Section 5.1.3.
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Results

I found that such a model fit the data (the first 1000 items in the list, that is) with a
beta of -0.61 (k = 0.61) and an adjusted r-squared value of 0.97. However, the value
of k is quite different from unity (Zipf’s Law is sometimes defined as having a value
close to unity), although it is on the same order of magnitude. This is an excellent
fit. In Figure 6.1, the data are plotted; as you can see, the relationship is quite linear,
except for the downward slope of the tail at the extreme right. This shape is similar
to that shown in Albert et al. [3].

Many of the pages that had the highest frequencies in this list were not what I
would have expected, but that is probably due to the particularities of Yahoo!. For
instance, some of the top frequencies were to pages on the New York Times Web site,
but this is probably due to the partnership that Yahoo! has with that site. However,
many of the pages that you would expect to be most frequently referenced are near
the top of the list of 61,130 unique URLs found among the 100,000 links gathered
from the pages. For instance, www.microsoft.com is #78, www.apple.com is #320,
www.cnn.com is #334, and www.ibm.com is #1872.

I also did an extraction of 100,000 URLs using random links drawn from a list of
about 1.23 million Dmoz links that I had downloaded from www.dmoz.org. Following
about 13000 of these links (some of which were dead) yielded the 100,000 links. This
list looked quite a bit different than the one drawn from Yahoo!; as in the case of the
Yahoo! list, the top links are not Amazon, Yahoo!, IBM, etc. as one might expect,
but considering the same pages as in the Yahoo! list, www.microsoft.com is #050,
www.apple.com is #361, www.cnn.com is #482, and www.ibm.com is #464. So this

(admittedly small) sample is approximately in the same order, although the final two
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Figure 6.1: Log(Rank) Versus Log(In-Link) Frequency for the Top 1000 Pages in
Terms of In-Links within a Sample of 100,000 Pages Randomly Drawn from Yahoo!
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Figure 6.2: Log(Rank) Versus Log(In-Link) Frequency for the Top 1000 Pages in
Terms of In-Links within a Sample of 100,000 Pages Randomly Drawn from Dmoz
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are interchanged. A better model would be constructed by combining both and using
more pages from each.

Fitting the same Zipf’s-law-based log-log regression model to the top 1000 fre-
quencies in the list, we get a beta of -0.83 (k = 0.83) and an adjusted r-squared value
of 0.97. This is again an excellent fit; the data are plotted in Figure 6.2. Again, the
value of £ is quite different from unity, although not so much as above.

I also tried to use a larger sample of one million links, which 500,000 were drawn
from links off of 14,152 random Yahoo! pages and 500,000 were drawn off of links
from 13,014 random Dmoz pages. A log-log fit of Zipf’s law to this sample gave a

beta value of -0.63 and an adjusted r-squared value of 0.95, again an excellent fit.
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Figure 6.3: Log(Rank) Versus Log(In-Link) Frequency for the Top 1000 Pages in
Terms of In-Links within a Sample of One Million Pages, Half Randomly Drawn from
Dmoz and Half from Yahoo!
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The data are plotted in Figure 6.3. The value of £ once again differs from one.
Since this is the largest sample I have, I used it to determine the highest-frequency

pages on the Web for the purposes of disconnecting cliques of pages connected by

highly referenced pages, for the purposes of disambiguation, as described in more

detail below.

Discussion

These experiments have validated Zipt’s Law for the particular sets of pages I have
been using. This is interesting because the formulation of the Zipf’s Law relation

(in terms of relation between the number of in-links to a page and the page’s rank
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with respect to that number) is different from that seen earlier in the literature, and
therefore the Zipf’s Law exponents are different from those obtained, for instance, by
Albert, Jeong, and Barabasi |3].

Another way to attempt to extract a random sample of pages from the Web is
to pass random English words to search engines as queries and collect some fixed
number of URLs per query. If you pass the search engine 100,000 words and collect
100 pages per word, that will give you a sample of 10,000,000 URLs, and you can then
find an even larger set of pages to which these point. I have not tried this approach
yet, though. The ideal approach, would be to elicit the support of some large search
engine such as Google or AltaVista to give out a large pseudo-random sample of its
page list, and then frequency counts of the pages these point to can be computed.
But the large search engine companies may not be willing to divulge this information
to outside researchers, for proprietary reasons. Another good source of information
for separating out connected components on topics would be to exclude those pages
from the graph that are among, say, the top 1,000 pages in terms of their global
Google PageRank. However, Google does not divulge these pages. Perhaps if it did,
other search engines would favor these pages as well, which Google does not want to

happen.

6.1.2 Hierarchies of Pages and Connected Components

The Web can be viewed as organized in a hierarchy. At the bottom are individual
home pages, pages of small companies and institutions, etc. Higher up are topi-
cal “authorities” and “hubs.” In the terminology of the Clever project [58], these

are referenced many times (“authorities”) or contain large numbers of references
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Figure 6.4: Part of the Web Visualized as a Hierarchy

(“hubs”). At the top of the hierarchy are the most globally-referenced pages, such
as www.yahoo.com, www.amazon.com, www.nytimes.com, www.cnn.com, etc. An
idealized view of such a hierarchy is shown in Figure 6.4. Of course, this hierar-
chy is only an idealization; in reality there are many downward and lateral links.
However, hierarchies give some insight to the structure of the Web. However, as we
have seen above, Albert, Jeong, and Barabasi found that the probabilities P, (k)
and P, (k) that a given document on the Web has & out-links and in-links both fol-
low power laws, with exponents k of 2.45 and 2.1 respectively [3]. This indicates
that exponentially-diminishing shares of the pages on the Web have large numbers of
in-links and out-links. This is consistent with the view of the Web as a hierarchy.
Since the Web is divided into many topical interest groups, there are pages that
are authorities or hubs on almost any conceivable topic. The hierarchical nature of
the Web is not really a computing phenomenon; it is a social phenomenon, having
to do with the fact that there are many hierarchies of status, power, and financial
capital in society; the Web reflects all of these, like all media, see, for instance, [77].
It is also something of a sociological phenomenon, that comes from the fact that if

one person sees a site that she likes, and links to it, this increases the probability that
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someone else will see that site and link to it as well.?

For instance, there are many pages on the Web which are maintained by Jaguar
(automobile) dealers and enthusiasts. Many of these pages point to the home page
of the Jaguar automobile company, which is therefore an authority. Others contain
many pointers to other pages of dealers and enthusiasts, and therefore serve as hubs.
Note that the Jaguar company site is also a hub, since it links to many dealer Web
sites. Authorities (and to a lesser extent hubs) are likely to be listed in directory
sites, so this places the directory site higher up in the hierarchy.

Also, many of the pages lower in the hierarchy are likely to point to popular search
engine and directory sites, as well as other popular sites such as Amazon.com. The
latter site encourages linking by paying a percentage of sales to the linking sites when
the sales were made as a result of the link. Thus, much of the inflow to sites comes
from pages lower down in the hierarchy. In addition, there are sites that host large
numbers of pages, such as the Geocities community site (now part of Yahoo!), and
these sites get major inflow by virtue of the number of pages that they host. Of
course, the Web is not organized as anything close to a complete hierarchy; not only
are there pages that do not participate in a hierarchy, there are many lateral links
between sites at the same level of the hierarchy, among pages that do participate in a
hierarchy to some extent. Thus, it embeds both a hierarchy and other, lateral, links.

One sees this in groups of pages run by groups of enthusiasts. However, looking at
the subset of links that creates a hierarchy allows one to see how topically unrelated

portions of the Web are connected to one another. They are typically connected via

2This process could potentially be modelled, if one assumes something about the distribution
of Webmasters’ quality assessments and the probability that those quality accessments would be
translated into new links by the Webmasters. Such a model would have to take into account the
differential overall proclivity of Webmasters to create new links.
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a large site which has no particular topic, but is used by the entire Web (such as
Yahoo!.) The Web can be thought of as a directed graph, and directed graphs can be
separated into strongly connected components.

Each strongly connected component has the property that any two nodes A and
B in it are mutually accessible; i.e. you can get from A to B via directed links, and
back again via other directed links. However, it is not possible to get from any node
in one component to any node in another component and back again. An undirected
graph can be separated into connected components, which are simply subsets of the
nodes of the graph, and which have the property that one can get to any node from
any other in each subset by a path of one or more edges.

The Web can also be thought of as an undirected graph, if one declares, for this
purpose, that two nodes are connected (by an undirected connection) if there is at
least one (directed) connection between them in the directed graph representation of
the Web. Connected or strongly connected components can be used to separate out
regions of the Web that are likely to be semantically related. A method of computing
connected components is given in Figure 6.5. In order to make them work better in
a Web application, it is best to remove links to portal sites or other highly referenced
sites, such as Yahoo! or Excite, because these sites tend to be quite strongly connected
in a bi-directional manner and therefore can connect semantically unrelated material.
In order to do this, one simply removes all links involving these highly-referenced
pages, and then recomputes the components as given in Figure 6.5.

Also, within Web sites, it is best to add a link back to the home page from other
pages, if it is not present, for the purpose of computing strongly connected com-

ponents. This prevents nodes within Web sites that are directed trees from being
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Figure 6.5: A Method of Computing the Connected Components of a Set of Web
Pages W

1. For each undirected link (py, p2) between two Web pages piand p, in W:

(a) If neither p; nor p, have been placed in a component, create a new com-
ponent containing p; and p,

(b) If py is in a component, but py is not, add p, to the same component in
which p; is found.

(c) If py is in a component, but p; is not, add p; to the same component in
which p, is found.

(d) If p; and po are in different components, merge these two components into
a single component.

2. Return the set of components so generated.

considered singleton strongly connected components. Fortunately, the URL struc-
ture of many Web sites is organized as a tree, so it is possible to find such tree-like
structures. A link back to the home page from internal nodes creates cycles making
it possible to follow links from any page to any other, and makes the entire site a

strongly connected component.

6.1.3 Computing Connected Components: An Experiment with
a “Jaguar” Query

For simplicity, I have experimented with connected components, viewing the a subset
of the Web as an undirected graph. As a preliminary experiment (more detailed,
comparative experiments are described below), following Kleinberg and the Clever

Project with which he is associated [58], I have used the query “jaguar” when passed to
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the search engine Altavista. Again following Kleinberg, I then augmented the results
of the query (the primary result) with secondary pages which either point to or are
pointed to by pages in the primary result. These additional pages may be particularly
relevant to the query because they are likely to contain hub or authority pages, in the
terminology of the Clever project. Also, they are likely to make the graph composed
of the primary and secondary pages better connected than the primary pages alone
would be. In the case of the “jaguar” query, these result pages appeared to be on
the following subjects: the jaguar (the wild animal), the automobile, the Jacksonville
Jaguars football team, a chemistry software package named Jaguar, and the Atari
Jaguar video game.

I then computed, using exhaustive search of all of the search results, all the con-
nected components within the undirected graph representing all these primary and
secondary pages. The initial such computation contained one large component that
contained references to pages about the chemistry software, the animal, the auto-
mobile, and the video game. This led me to wonder which pages were connected to
such semantically unrelated regions of the Web. So, I used a breadth-first search to
find the path from one node to another. I found that these semantically unrelated
sites were connected through nodes, such as the Internet Explorer home page and the
“Dilbert” home page (about a cartoon which is very popular on the Internet), which
are semantically unrelated to any of them but are linked to by many pages. The
only one of the linkages that was marginally semantically linked to both sites that it
connected was the Nascar home page, which has to do with auto racing. It was linked

to one of the Jaguar automobile pages as well as a page where a game hobbyist had
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implemented a video game version of an auto race.?

A Strategy: Eliminate Highly-Referenced Pages

However, the Nascar page, the Dilbert page, and the other pages that linked the
semantically-unrelated components, are all among the most-frequently referenced
pages on the Web. This suggests the following heuristic for successfully separat-
ing semantically-related components of the Web. Use a large sample of random Web
pages to compile statistics on the Web pages to which other pages most frequently
link. Impose a cutoff; say the top 500 sites that receive links.* Then remove these
sites from the graph from the point of view of computing components. The best
place to make the cutoff can be determined experimentally. This modified algorithm
is described in Figure 6.6.

In my experiment with the “jaguar” query, removing these frequently-referenced
pages broke the graph into components in which all the pages in most of the particular
components were about one particular sense of “jaguar.” The details of the results
of this process are discussed in Section 6.1.4. There were also pages within a given
component that were irrelevant to the query, but happened to be linked off of a page
that was. After the connected components of the graph generated by response to a
query are computed, one is still confronted with three problems.

The first problem is that some of the components contain pages that are com-

3Prof. Jude Shavlik of the University of Wisconsin has pointed out to me that a dictionary
page for say, “jaguar,” that contains links to pages of that are about each meaning, would connect
the connected components. Such dictionaries would therefore have to be explicitly excluded via
hand-coding, or a method for detecting dictionary pages would need to be devised.

4This is an imperfect method to find the Web pages that are most frequently referenced on the
Web. Ideally, we would visit all the sites on the Web, but this pseudo-random sample is the best we
can do.



169

Figure 6.6: Computing Connected Components of a Set of Web Pages W, Omitting
the Globally Most Highly-Referenced Pages

1. Obtain a large random sample of Web pages (via a service such as Yahoo!’s
random page generator). Call this set X.

2. Consider the links off of X. Call the set of such links Y. Count, for each link in
Y, the number of pages in X pointing to it. Sort Y by this in-link count, in
descending order. Consider the top n pages in Y, where n is a tuning parameter.
Call this set of top pages Z.

3. Remove any pages in Z from W, and then follow the procedure for computing
connected components given in Figure 6.5.

pletely or partially irrelevant to the query. The second problem is that some of the
components still contain pages from more than one disjoint meaning of the query
(e.g., in the case of the components of the “jaguar” query, still contain pages referring
to the animal and the car). The third problem is that some of the components are
separated, but refer to the same meaning of the query—there just happens not to be
any connection. Since the link structure of the Web is constructed by large numbers
of people, over whose activity one has no control, these problems are likely to recur.
However, one can do semantic and textual analysis in order to alleviate them. A sim-
ple way to deal with these problems involves the term-vector approach common in the
information retrieval field. One can treat all the documents in each component as a
single document and compute the term vector for the combined document, dropping
very frequent terms. Or the centroid (average) of the term vectors can be used, after
normalizing each term vector, so as to treat all documents equally, both short and
long.

As we have noted earlier, clustering can be computationally expensive; many
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algorithms involve nlog(n) term-vector dot product steps, where n is typically the
number of documents in question, which can be expensive to do on the fly when you
want to return search engine results to a searcher in a clustered manner. Some newer
algorithms have a near linear time complexity, but still typically require multiple
iterations through the documents [56]. Using connected components and treating
them as single documents for the purposes of clustering can reduce the effective value
of n significantly, since the Web is already telling you, through its connections, which
pages are semantically related to which other pages.

Components can be combined if their combined term vector is similar. So, for
instance, if a particular component is about the animal sense of jaguar, it will tend
to contain words such as “zoo” and “cat.” Other components containing these words
can be combined with that component.

In addition, pages within a particular component can be dropped if their term
vector is too dissimilar with that of the component as a whole. This can be a way of
getting rid of pages that are semantically unrelated to the query in any of its senses.
If a particular page is not similar to the average of the component that it is currently
in, but is more similar to another component, it can be moved to that component,
rather than discarded. Or, a new component can be created.

Another way to deal with these problems involves the use of WordNet (or a similar
semantic network). Individual documents or sets of documents can be characterized
by the set of “semantic neighborhoods” within WordNet that their terms imply. I
define a semantic neighborhood in WordNet as a group of words connected by the
various word relations (hyponymy, hypernymy, synonymy, and meronymy) that Word-

Net supports. A document is associated with a particular semantic neighborhood if it
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has several words that fall within that neighborhood. Typically, a document will be
associated with several semantic neighborhoods within WordNet. Note that the use
of WordNet overcomes a typical drawback of the use of term vectors; the fact that
different terms can refer to the same concept. In WordNet, for instance, both the
word “car” and the word “automobile” will bring up the same semantic neighborhood,
because these terms are both members of the same synset (set of synonyms).
Connected components can be combined if they have one or more semantic neigh-
borhoods in common (again, this is something that needs to be experimentally tuned).
Documents can be dropped from a connected component if their semantic neighbor-
hoods are too different from those of the component as a whole. Even though WordNet
does not contain some of the proper names that are involved in Web queries, it can
still be used to classify the results of those queries. Thus, even though WordNet does
not know that a Jaguar is a kind of a car, it still can distinguish pages that are about
the animal from those that are about the car, since these evoke different semantic

neighborhoods in WordNet.

6.1.4 Semantic Disambiguation of Three Ambiguous Sets of

Query Results: A Detailed Look

Let us consider three ambiguous queries in more detail. (Of course, most queries are
ambiguous, but we are simply considering three simple ones.) The ones I have chosen

are “Jaguar” (as above), “Lincoln,” and “Ford.”®

5There are actually some semantic connections between these words; for instance, the Jaguar
automobile company is now owned by the Ford Motor Company, and Lincoln is a brand of Ford
automobile. And Abraham Lincoln was shot at Ford’s Theatre (not the same Ford).
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Hypothesis

Separation into connected components while removing links to highly-referenced pages

can be an effective method to semantically separate groups of pages.

Data Set

For a “jaguar” query, Google returns 1,060,000 results,® which means that this many
pages on the Web contain that word (of those that are in Google’s database). The
first 9 results are about the car. The 10th result is about a “Star Trek” ship named
the “USS Jaguar.” Further down the list, there are pages about the Atari Jaguar (the
video game), the Jaguar chemistry software, some software called Jaguar developed at
Berkeley which extends the Java programming language, the animal Jaguar, a resort
in Belize named after the animal, a site featuring scantily-clad women posing with
Jaguar cars, and a page about the German movie “Aimee and Jaguar,” a fan page for
the TV show “The X-Files” put together by someone calling himself Jaguar, a porno-
graphic site called “Jaguar’s Bikini,” a site called “Jaguar Sun” about Mayan culture,
and the home page for something called the “Jaguar Rubber Stamp Company.” This
is what I found by looking through the first 120 results; I am certain that I would
have found more types of pages if I had continued looking.”

For a “Lincoln” query, Google returns 3,590,000 results. (Note that this indicates
that “Lincoln” is a more common word on the Web than “jaguar,” and therefore

probably more common in English texts in general, because the total corpus of text

6This is what Google says; it is obviously rounding to the nearest 10,000.

"The richness of the use of proper names and metaphorical uses in natural language, as illustrated
by this one case, shows how daunting a task the enumeration of the possible meanings of a word
can be. Such an enumeration has been undertaken by the WordNet group.
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on the Web is probably comparable to a general printed English corpus, although it
may have a higher frequency about words about certain topics, such as technology.)
The first result is about the Lincoln automobile. The second result is about
Abraham Lincoln. The third result is about Lincoln, Nebraska. Further down the list
are pages for Lincoln University (in Pennsylvania) and Lincoln Center (the performing
arts center in New York City). What is interesting about this, semantically, is that all
of these entities are named for Abraham Lincoln, but in the mind of the searcher, that
probably makes little difference. That is, if the searcher is looking for pages about
Lincoln, Nebraska, and types in the query “lincoln” (not realizing immediately that
this will bring up a lot of information that he is not interested in), it matters little
to the searcher that this may make him remember that Lincoln, Nebraska is named
after Abraham Lincoln. In fact, this probably is a distraction. Ideally, he would see
a list of the categories that his search could take him to, and allow him to refine his
search, before it displayed any Web pages at all. Of course, most search engines do
not do this (but see Section 6.1.6 for some exceptions), although Google now provides
links to the Open Directory (Dmoz) for pages that it knows are in Dmoz, so it shows
searchers the categories of the pages that it finds relative to a particular query.
Continuing with “Lincoln” pages, Google also returns pages about the Lincoln Park
Zoo in Chicago, another Lincoln University, this one in Canterbury, New Zealand,
yet another Lincoln University (in Missouri), the MIT Lincoln Laboratory, Lincoln
Memorial University in Tennessee, U.S. Senator Blanche Lincoln, Lincoln Christian
College in Lincoln, Illinois, the home page of Lincoln Stein, who is a well-known
computer programmer and researcher. And this only takes us through the 32nd of

the results returned by Google. While the plurality of pages are about Abraham
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Lincoln himself, it is only 12 of the first 32.

The “Ford” query also yields a number of ambiguous results. The first four results
returned by Google refer to the Ford Motor Company. The 5th is a link to the Ford
Foundation, which is related in origin to the Ford Motor Company. There are a
number of links to various foreign dealers and branches of Ford Motor, or related
topics, such as a site devoted to racing Fords. There is a site devoted to the Henry
Food Museum near Detroit. It is only when we reach links 15-20 in the list that
we find links that are totally semantically distinct from Ford Motor; there are pages
concerned with Ford’s Theatre in Washington, D.C. where Abraham Lincoln was
shot, and pages concerned with President Gerald Ford. Following this, are pages
concerned with: the Betty Ford Center (for substance abuse), Henry Ford Hospital
(in Detroit), Representative Harold Ford of Tennessee, the Ford Amphitheaters in
Los Angeles, the actor Harrison Ford, the Gerald Ford School of Public Policy at the
University of Michigan, a company called “WJ Ford Surplus Enterprises,” a company
called “Ford Meter Box,” and Ford County, Illinois. While a number of these are
quite semantically disjoint (due to the commonness of “Ford” as a family name in the
English-speaking countries), there are semantic linkages between somewhat distinct
entities, such as the link between Ford Motor and the Ford Foundation, and the link
between President Ford and the public policy school named after him. Ironically,
despite Google’s reputation for being the best search engine on the Internet as of this
writing, it—like other search engines—gives the searcher little ability to automatically
refine her results, other than allowing the ability to manually form a more detailed
query or search within the existing query, as other search engines do.

I

I downloaded the top 200 results for the “jaguar,” “Lincoln,” and “Ford” queries
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Table 6.1: Characteristics of Pages (URLs) Returned to Three Queries to Two Inter-
net Search Engines; Top 200 URLs Returned by Each Search Engine are Kept

Query | # from Lycos Only | # from Google Only | # from Both | Total # URLs
Jaguar 122 122 78 322
Lincoln 102 102 98 302

Ford 108 108 92 308

from Google and from the competing Lycos search engine. My results indicate that
there are substantial differences between the behavior of the various search engines,
if these two are representative of the universe of search engines.

For the “jaguar” query, there are 78 URLs in common returned by the two engines.
This means that each result set has 122 URLs that are not in the top 200 of the other
result (although probably many of them are further down the list), and that the
combined sets contain 322 URLs. For the “Lincoln” query, there are 98 URLs in
common, so that each has 102 URLs unique to itself, for a total of 302 URLs. For the
“Ford” query, there are 92 URLs in common, so that each set has 108 unique URLs,

for a total of 308 URLs in the union. These data are summarized in Table 6.1.

Method

For the purposes of computing the connected components, I used the combined results
of the two engines, so the sets varied slightly in size (the 322, 302, and 308 union
sizes above). There are two ways to compute the connected components. The first
way is to consider only direct connections between pages. The second is to allow
indirect connections (with one intermediate page). Of course, one could allow even

more than one intermediate page, but I have not done this. The number of indirect
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connections grows exponentially with the distance between pages, making retrieving
pages beyond even one indirect connection unwieldy. For instance, the 308 pages in
the “Ford” set are connected to an additional 4,117 pages, giving a ratio of an average
of 14.3 links per page. Projecting this to the next level of connections would give
about 63,000 pages. (Of course, this is ultimately bounded by the total size of the
Web and the fact that it is sparsely connected).

Problems with highly-referenced pages connecting unrelated pages emerge only
with indirect connections, since all the direct connections are by definition on topic
(since all the query results contain the search term) and therefore probably not highly
referenced on a global level (that is, with reference to the Web as a whole, such as
www.yahoo.com). Including the indirect connections has the advantage of poten-
tially fusing semantically-related sets, at the expense of possibly fusing semantically-
unrelated sets, usually through highly-referenced pages.

As we have seen with other relatively small sets of Web pages, the number of direct
connections between these sets is quite sparse. Ignoring self-links between pages, there
are only 98 direct links (involving two pages) between pages in the “jaguar” set of 322
pages. There are 203 direct links in the “Lincoln” set of 302 pages. There are 80 direct
links between the pages in the “Ford” set of 308 pages. These links are very unevenly
distributed among the pages in the sets. These data are summarized in Table 6.2.

Thus, in principle, the complexity of computing the connected components is
O(n?) where n is the number of pages involved, because this is the complexity of
the number of possible connections between pages, and in order to compute these
components, you consider actually connected pages, merging sets when there is a

connection between pages that that were, up to that point, believed to have been in
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Table 6.2: Number of Direct Links Between Pages in Each Set for Three Queries

Query | Size of Set (n) | Potential Number of | Actual Number of Links
Links (w/o Self-Links) | (w/o Self-Links)
(n(n —1))

Jaguar 322 103,362 98
Lincoln 302 90,902 203
Ford 308 94,556 80

different sets. However, since the connections are actually very sparse, much more
sparse than they could be in a completely-connected graph, the performance is much
better than this. From the three examples above, we can see in each case that the
number of direct links is actually smaller than the number of pages, let alone the
square. However, since these are human-created artifacts, one could in principle find
sets that were close to completely connected, but in practice this would be quite rare,

and such sets would probably be quite small.

Results: Direct Links Only

I used the direct links to group pages together into sets (connected components,
ignoring the direction of links). In the case of the “jaguar” pages, there are 17 distinct
connected components, composed of 76 of the 322 pages. One of these sets has 29
members, and another has 13 members. One set has 4 members, two have 3, and
the rest of the sets consist of only pairs of connected pages. Most of the pages are
singletons—that is, they are not connected to any of the others in the set.

For the “Lincoln” pages, there are 20 distinct connected components (sets), com-

posed of 110 of the 302 pages. One of the sets has 48 members. The next largest set
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has 15 members; after that, there is a set with 7 members, one with 5 members, two
with 4 members, one with 3 members. The rest of the sets consist of pairs of pages.

For the “Ford” pages, there are 16 distinct connected components (sets), composed
of 69 of the 308 pages. There is one set with 25 members, one with 8 members, one
with 6 members, one with 4 members, three with 3 members, and the rest are pairs
of pages.

In my judgment, this algorithm does quite a good job of connecting only
semantically-related materials, although of course there is no guarantee of this, be-
cause anyone can place an unrelated page on the Web and link to a related page. We
see that the performance is good by looking through the results of these examples as
follows:

In the case of the “jaguar” pages, the set of 29 pages are all about the Jaguar
automobile, except for a single page, www.savethejaguar.com, which is a page devoted
to the preservation of the Jaguar (animal) as a species. This site is sponsored in part
by the Jaguar automobile company, to which it is linked, and therefore it falls into the
same set as that site. The set with 13 members are all about the Atari Jaguar video
game. All of the other smaller sets contain (within each one) semantically-related
pages, about either the animal, the car, the video game, or resorts with “jaguar” in
their name. Note that not all of the meanings of “jaguar” that are detailed above
appear here, because only a fraction of the pages in the set are directly connected to
another page in the set.

For the “Lincoln” pages, the set with 48 members consists entirely of pages about
Abraham Lincoln and his family. The set with 15 pages consists of pages about

Lincoln, Nebraska. The seven member set consists of pages about Lincoln City on
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the Oregon Coast, and the surrounding area. The five member set consists of pages
about the Lincoln automobile. One of the four member sets consists of pages from
the University of Nebraska at Lincoln, and the other consists of pages from Lincoln
University in New Zealand. The remaining sets are concerned with topics such as
the Lincoln Highway, some more pages about Lincoln, Nebraska, some pages about
Lincoln County, Kansas, some about the Lincoln United soccer club in England, some
about Lincoln College in Lincoln, Illinois, some about Lincoln University in Missouri,
some about Lincoln County, West Virginia, some about the University of Lincolnshire
in England, some about Lincoln Center in New York, some from a Web site run by
a man named Lincoln Stein, and some about the Lincoln Park Zoo in Chicago. The
semantic separation is perfect, but some of the sets (notably the two about Lincoln,
Nebraska) need to be merged.

For the “Ford” pages, the set with 25 members are all directly related to the Ford
Motor Company or its founder, Henry Ford, except for the “Ford Rugby” page in
New Zealand, which features rugby teams sponsored by Ford Motor. The set with
8 members are all related to President Gerald Ford. The 6 member set consists of
pages about the actor Harrison Ford. The remaining sets are consist of other pages
about Ford cars, the model Patricia Ford, Ford County, Illinois, the Ford Foundation
fellowships, Web pages about the small UK company Ford and Mason Ltd, and pages
about Ford’s Theater, where Lincoln was shot. Each set contains only pages about
the topic in question, so again, the semantic separation is quite good.

Table 6.3 summarizes the above data, showing the two largest connected compo-
nents for each query. As we can see from this table, semantic separation is good for

these large components, and we have seen that it is good overall.
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Table 6.3: The Two Largest Connected Components in Size (Number of Pages) Found
in Each Set of Pages for Each of the Three Queries

Query | Set Rank in Size | Set Size | Set Topic
Jaguar 1 29 Jaguar automobile (all but one)
Jaguar 2 13 Jaguar video game
Lincoln 1 48 Abraham Lincoln (and his family)
Lincoln 2 15 Lincoln, Nebraska
Ford 1 25 Ford Motor & Henry Ford (all but one)
Ford 2 8 Gerald Ford

After the clusters are formed, they could be classified. One way to classify them
would be to use the multi-resolution Naive Bayes method in combination with data
from Dmoz, which I have described in Section 4.2, assuming that Dmoz’s editors have
already set up a category for each of the meanings of the query. Each page in each
cluster could be assigned to a category with this method. Then the cluster as a whole
could be assigned to the category to which the largest number of its members were
assigned. Or, it could be assigned to the top two or more categories, depending on

how many labels one wants to assign to each cluster.

Results: Both Direct and Indirect Links

I also ran the connected component algorithm using both direct and indirect links.
These are links that are mediated through a page not in the set. For instance, if pages
A and B are both in the set, and both are connected directly (in either direction)
to another page C not in the set, then A and B are considered to be connected
indirectly. In this version, A and B are connected if they are connected directly or

indirectly. An indirect connection is not counted if page C is among the set of the
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5,000 most frequently referenced pages on the Web, as computed by using the sample
of one million references taken from Yahoo! and Dmoz as described above.

The “Ford” set, using this methodology, excludes connections via 72 pages (C in
the description above), which are the 72 that happen to be linked from the “Ford”
set that are in the 5000 most frequently referenced pages. These pages include such
well-known pages as www.apple.com, www.google.com, www.microsoft.com,
www.whitehouse.gov, and www.netscape.com, as well as some that are not as obvious.
However, 1 was not able to determine that a single one of these globally highly-
referenced pages was directly about any of the several meanings of the word “Ford.”
This is a good thing, because one would not want to break the connection via C if this
was the case. Generally, I believe this technique will work because most Web queries
are not going to want any of these most-referenced pages as part of their results—the
searcher will be looking for something more specific.

This method leads to a modest increase in the number of pages included in the
connected components. For the “Jaguar” pages, 96 of the 322 pages are now included,
as opposed to 76 when using direct links only. For the “Lincoln” pages, 133 of the 302
pages are included, as opposed to 110 with direct links. For the “Ford” pages, 101 of
the 308 pages are included, as opposed to 69 using direct links.

For the “jaguar” pages, there is now one set consisting of 39 pages, one consisting
of 19 pages, one consisting of 5 pages, and one consisting of 3 pages. The rest are all
pairs of pages.

For the “Lincoln” pages, there is now one set consisting of 54 pages, one consisting
of 17 pages, one consisting of 9 pages, two with 5 pages each, one with 4 pages, and

3 with three pages each. The rest are all pairs.
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For the “Ford” pages, there is now one set consisting of 32 pages, one consisting of
9 pages, one consisting of 6 pages, two consisting of 4 pages each, and three consisting
of 3 pages each. The rest are all pairs.

As in the case of direct links only, the semantic separation is quite good (from my
experiments, it would not have been as good if the top 5000 most referenced links
had not been excluded). The size of the largest set has increased in each case, in the
case of “jaguar” from 29 to 39, in the case of “Lincoln” from 48 to 54, and in the case
of “Ford” from 25 to 32. In each case, each of these sets remains almost entirely on
the most frequently occurring topic in the sample, which are, as noted above, Jaguar
cars, Ford Motor and associated entities, and Abraham Lincoln respectively.

For the “jaguar” pages, the set of 39 pages are all about the Jaguar automobile,
except for the same Jaguar (animal) conservation page that showed up in the con-
nected components involving the direct links only. The set of 19 pages are all about
the Atari Jaguar video game, an increase of 6 pages over the 13 that appeared among
the direct links only. The set with 5 pages are from a resort with “jaguar” in its name,
and the set with 3 pages is also about Jaguar automobiles. Most of the rest of the
sets are also about the automobile, with a few being about miscellaneous entities that
have “Jaguar” in their name.

For the “Lincoln” pages, the set of 54 pages are all about Abraham Lincoln. The
set of 17 pages are all about Lincoln, Nebraska, up from 15 using direct links only.
The set of 9 pages are about Lincoln, Oregon, up from 7 using direct links. The
remaining sets are about all the same topics that were found with the direct links,
again with excellent semantic separation.

For the “Ford” pages, the set of 32 pages are all about the Ford Motor Company
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Table 6.4: The Two Largest Connected Components in Size (Number of Pages) Found
in Each Set of Pages for Each of the Three Queries, Using Direct and Indirect Links

Query | Set Set Increase over | Set Topic
Rank | Size | Direct Links
Only

Jaguar |1 39 10 Jaguar automobile (all but one)
Jaguar | 2 19 6 Jaguar video game
Lincoln | 1 54 6 Abraham Lincoln (and his family)
Lincoln | 2 17 2 Lincoln, Nebraska

Ford |1 32 7 Ford Motor & Henry Ford (all but one)

Ford |2 9 1 Gerald Ford

or Henry Ford or the Ford Family, except for a page about a Rugby team sponsored
by Ford. The set of 9 pages are all about President Gerald Ford. The 6 pages are
about the actor Harrison Ford. All the remaining pages are on the same topics that
were found using the direct links; the semantic separation is once again excellent.
Table 6.4 summarizes the results from the three queries. The differences from

direct links only, as previously shown in Table 6.3, are noted.

Discussion

The above technique of finding connected components after pruning out the most-
globally-referenced pages, is very effective in separating groups of Web pages that
are the result of a search engine query into semantically-related components. We
have seen this for three distinct Web queries. The version of the technique that uses
both direct and indirect (two-hop) links is more effective than the technique that uses
direct links only.

Both versions of this technique are quite tractable computationally. In practice,
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Table 6.5: Set Size, Direct Internal Links, and Total Link Count for the “Ford,”
“Jaguar,” and “Lincoln” Sets of Pages

Query | # Pages | Direct Links | Total Out-Links | Mean Out-Links/Page
Ford 308 80 5233 17.0

Jaguar 322 98 6714 20.1

Lincoln 302 203 6355 21.0

this technique would be used in conjunction with a search engine. Search engines
tend to keep track of links as they retrieve them, in order to spider to links that they
have not seen before. Pulling links out of html files is a relatively cheap activity,
as html files (which are text only) tend to be quite small (as opposed to image or
multimedia files). Also, the number of links on a page tends to be quite tractable.
Table 6.5 shows the number of pages, direct links between these pages, and total
out-links to all pages for the three sets of pages we have studied above. In forming
the sets, even in the more taxing task of using indirect links, the system only needs to
visit each of about 20 links per page, on average, and only needs to visit this linkage
once in forming the connected components, because the algorithm, as described in
Figure 6.5, does not require any backtracking or repeat iterations through the set of
linkages. Thus I believe such an algorithm could be deployed in real-time on a public
search engine without the consumption of excess resources. In addition, connected
components could be computed in advance of any actual queries.

One flaw in this technique is that it does not group together pages that happen
to be on the same topic but happen also not to be linked on the Web. This technique
could be used as an initial phase in clustering; textual comparison of the various com-

ponents with one another could be used in order to determine whether components



185

should be merged.

6.1.5 Finding the Most Salient Pages within Connected

Components using In-Link Counts
Hypothesis

The connected components described above can also be used to determine the possibly

most significant pages within each connected component of a set of pages.

Method

Within each component, I find the pages that are pointed to by the largest number
of other pages in the component. The technique is outlined in Figure 6.8. This is a
somewhat similar technique as that used by Google (except that it is not recursive).
However, it has the advantage over the technique used by Google in that all the pages
in each connected component are likely to be on a single topic. Therefore, the highly
ranked pages in each connected component, as found by a count of such in-links, are
likely to have both high relevance to a particular topic represented by a clique on the
Web and also high quality or salience within that topic.

This is illustrated by the hypothetical 5-page connected component shown in
Figure 6.7. In this figure, the node (page) labelled A has the largest number of

in-links (4), so it is selected as the most significant page in the component.
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Figure 6.7: A Hypothetical 5-Page Connected Component.

Figure 6.8: Finding the Pages in Each Connected Component of a Set of Web Pages
W with the Highest Number of In-Links

1. Compute the connected components of W as described in Figure 6.6.
2. For each component C of W:

(a) For each page P in C, count how many other pages in C also point to P.
Call this count inlinks(P,C).

3. For each component C of W, place each page P in C in descending order of
inlinks(P,C). Tt is likely that the most salient pages in each component have
the highest values of inlinks(P,C).
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Results

For the “jaguar” query, using only direct in-links, the largest connected component
is about the Jaguar automobile, and contains 29 pages, as we have seen. The
page with the largest number of in-links within this set has seven in-links, and is
www.jaguar.com, the Jaguar cars home page. The second largest number of in-links
is a page for the Jaguar owners Web ring; other member pages in this ring link to
that home page of the ring.

The second largest connected component has 13 members, is about the Atari
Jaguar video game, and has three pages tied for the most number of in-links (3 each).
All three of these are pages devoted to the game built by devotees, and all are highly
salient.

For the “Ford” query, again considering solely direct in-links, the page with the
highest number of in-links in the (largest) connected component of 25 pages, which
are largely about Ford Motor, Ford automobiles, and Henry Ford, is www.ford.com,
the Ford Motor Company home page, which has 15 in-links. The second largest
number is www.fordvehicles.com, another official Ford Motor Company page, with
seven in-links. (The number of total in-links remains quite sparse; for instance, this
component of 25 pages could have potentially n(n — 1) = 25 x 24 = 600 directed
in-links, but it only has 39 in total.)

Since these prominent Ford Motor company pages were found, this technique
appears to do a good job in identifying the most salient pages within the component.
In the second largest component, which contains eight pages and is about Gerald Ford,
the page with the most in-links, 3, is the official page of the Gerald Ford Library and

Museum, again, a highly salient page.
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For the “Lincoln” query, again utilizing only direct in-links, the page with the
highest number of in-links, eight, in the largest connected component of 48 pages
about Abraham Lincoln is a site called the Abraham Lincoln Research Site. Following
this in close competition is a page with seven in-links is a highly detailed page about
Lincoln’s assassination which has won a number of high reviews and site awards.
(These pages were both developed by the same author and illustrate a vulnerability
of simply counting in-links, since pages controlled by the same person or organization
can link to one another and boost their scores.) For the next largest connected
component, 15 pages which are about Lincoln, Nebraska, the two most referenced
pages within the component each have four in-links. One of these is the city’s daily
newspaper’s page, and the other is the home page of the city and county governments.
These are both obviously highly salient to the topic.

Thus we have seen that in all cases we have examined, the technique of identifying

high in-link pages within each component finds highly salient pages.

6.1.6 Looking at the New Search Engines: Teoma and Wisenut

In late 2001, at least two new search engines emerged that combined subject-relevant
link information (communities or clusters of pages) with in-link-counting, as used by
Google and Science Citation Index. These were Teoma (at www.teoma.com) and
Wisenut (at www.wisenut.com). I tested both of these on the three queries above.
Despite the usual hype, both systems missed obvious topics that were detected by
the simple connected component technique described above. And as is unfortunately
typical with many such systems, the systems are quite proprietary and secretive about

the techniques employed.
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For the Lincoln query, Wisenut got most of the major meanings—Abraham Lin-
coln, the Lincoln automobile, and Lincoln, Nebraska, but fouled up with respect to
“Lincoln City”, mixing up cities that were widely dispersed (Nebraska, England, Ore-
gon), and also malfunctioned with respect to “Lincoln County” in a similar manner.
There was no identified group of pages about Lincoln City and County, Oregon, even
though I found a component on the Web of such pages. It had some categories that
are lacking above, such as one for the Lincoln Trail (but this is probably because I
have quite a limited sample of Web pages), but was also lacking some other categories
that I found (e.g. the Lincoln Park Zoo). A technique that labeled the connected
components that I identify above by the most frequently occurring word pairs within
them, after dropping words off of a stop list, would work better, than whatever tech-
nique Wisenut is using. Wisenut’s system is also quite slow, much slower than Google,
at least for the queries I tried, although this may be a function of server or network
load rather than algorithmic design.

For the Lincoln query, Teoma gives fewer categories than Wisenut. Unlike Wisenut,
it did not make the mistake about Lincoln City and County. But it totally missed
quite a few topics, such as Lincoln Center and the Lincoln Park Zoo. It mis-labeled
its set of pages about the Lincoln Automobile as “quality care,” presumably because
many of the Ford Motor Company sites use this phrase, and it uses some sort of
common phrase extraction algorithm to label the sets. Teoma’s performance is better
than Wisenut’s.

For the Ford query, Wisenut did a good job of finding most of the major meanings,
although it missed some of the minor ones, such as pages about the model Patricia

Ford and about Ford County, Illinois. Frankly, I am mystified why it missed these—
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Table 6.6: Separation/Detection of Four Meanings for Each of Three Queries by

Teoma and Wisenut

Detected/Separated by:

Query Meaning Teoma, Wisenut
Lincoln Abraham Lincoln Yes Yes
Lincoln Lincoln Automobile Yes Yes
Lincoln Lincoln Nebraska Yes Yes
Lincoln Lincoln Oregon No No
Ford Henry Ford No Yes
Ford Ford Motor Company Yes Yes
Ford Gerald Ford Yes Yes
Ford Harrison Ford No Yes
Jaguar Atari Jaguar Yes Yes
Jaguar Jaguar Automobile Yes Yes
Jaguar Jaguar (animal) No Yes
Jaguar Jacksonville Jaguars Yes No
Total Percent Detected /Separated: | 66.6% 83.3%

the only explanation I can think of is that its page set is still too small, although

this is strange, because I picked these up with a small page sample. However, that

may have been drawn from a larger index. For the Ford query, Teoma missed all the

major topics except for those related to the Ford Motor Company and Gerald Ford;

it missed Henry Ford, Harrison Ford, and the Ford Foundation, for example. This

seemed to me to be quite poor performance.

Both Wisenut and Teoma have the disadvantage of classifying at only one level

of resolution, a flaw that would not be shared by a Dmoz-based system. For this

example (Ford), both systems list multiple topics that should have been organized

under a single topic for Ford automobiles (e.g. after-market parts, Ford Falcon, etc.)

For the Jaguar query, Wisenut found pages related to the Atari Jaguar and to
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the automobile. It also found just two pages related to the animal. It missed some
of the subsidiary meanings, such as the Jacksonville Jaguar football team and the
chemistry software named Jaguar. Teoma found the meanings for the automobile, for
the Atari Jaguar, and for the Jacksonville Jaguars, but missed the animal meaning
and the chemistry software.

Table 6.6 shows that Teoma and Wisenut do a pretty good job of picking up and
separating four major meanings of each of the three queries studied; Wisenut does
a better job than Teoma. As we have seen, where these systems fail is on some of
the less common meanings, which is what you might expect, since these less common
meanings offer less data on the Web with which to detect patterns.

Neither of these systems appear to work better than Northern Light, which has
been doing something quite similar for a longer period of time, but without the “buzz”
in the community. However, Northern Light’s Web search engine is no longer publicly

available.®

6.1.7 Directions for Further Research

It is likely that the results of of the clustering that results from computing the
connected components could be successfully refined using a conventional document-
similarity-based method such as a partitional clustering method, such as that used
in |56]. Instead of selecting the cluster seeds randomly, and building initial clusters
around them, the connected components could be used as the initial clusters, and

iterations could then be used, reassigning documents that fit better in a different

8Northern Light has decided to refocus their business on doing searches within proprietary sources
and doing specialized searching for corporate and other institutional clients.
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cluster, and perhaps eliminating some of the smaller clusters altogether. This could
fix the problem, associated with the connected component method, of two or more
components each consisting of pages that are on the same topic but just happen not
to be connected. This occurs frequently with commercial sites on the same topic,
since they compete and therefore do not inter-link [119]. It also happens often simply
because Web authors do not add links, due to a lack of knowledge, interest, or time.

Another approach would be to incorporate the link information directly into the
document similarity function, which then could be used with any clustering algorithm.
Text similarity and the hyper-link distance between documents are both ways of
estimating the underlying semantic similarity between documents. A method that
estimates this similarity using both of these is likely to perform better than one
using either one alone. Since document similarity measures are basic to all document
clustering methods, a better similarity measure is likely to lead to a better clustering
outcome. The following is one way to design such a hybrid clustering measure.

Let

simp(d;, d;)

be the similarity of the text of two documents, used for text clustering with a variety
of algorithms (see [106, 95]). Usually this is the standard term vector cosine similarity

[5], although alternates (e.g. [41]) may perform better. Then

SimT (dz, dj)

Y kenen stmr(di, dy)

simTN(di, dj) =

is the normalized similarity, where D is the set of all documents.
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Let
1 1 1
simy (di, d;) = (udist(di,dj) + ddistédi,dj) + ddist(dj,di))
and

. simpy, (dia dj)
dia d = )
SZmLN( J) ZkeD,leD SZmL(dkadl)

where udist(d;, d;) is the link distance between d; and d; with the links viewed as undi-
rected, ddist(d;,d;) is the distance from d; to d; along directed links, and ddist(d;, d;)
is the directed distance in the other direction. Note that the subscripts L, T, and N
refer to “links,” “text,” and “normalized” respectively. Note that any of these is set
to be infinite, if the respective undirected or directed path does not exist. Also, high
frequency pages such as www.netscape.com or www.yahoo.com may be pruned out
before finding these paths so as to have these distances be more closely related to the

semantic distance between pages.

Let
simTN(di, dj) + SimLN(di, dj)
2

simTLN(d,-, dj) =

be a combined similarity value. Note that it is normalized because it is the average
of two normalized values. This similarity measure treats link structure and text
information with equal weight, and could be used in experiments to see whether in

fact link information improves clustering performance.

6.2 Using WordNet to Disambiguate Results

WordNet [35] (described in Section 2.3) contains enormous quantities of semantic in-

formation, assembled laboriously by trained lexicographers and linguists. However,
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it does not contain a lot of information about proper names and the specific entities
associated with them (since this would be closer to the purview of an encyclope-
dia rather than a dictionary, and WordNet is closer to a dictionary, albeit a very
sophisticated one.)

For the three examples given above (“Ford,” “Lincoln,” and “jaguar”), WordNet
can only be of partial assistance in disambiguating the results. It “kmows” (that is,
has information in its database) the most about “Ford,” listing President Gerald Ford,
Henry Ford, and several other well-known people, as well as well as the underlying
sense of a crossing of a stream or river. However, it does not have any listing for the
Ford Motor Company, which is the topic of the largest group of pages returned by the
search engine. For “Lincoln,” it knows about Abraham Lincoln (the most frequent
page topic) as well as Lincoln, Nebraska, but none of the other senses listed above.
And for “jaguar,” the situation is the worst—WordNet knows only about the animal,
but none of the animal’s namesakes, including the automobile. So, since it only
knows about one meaning, it would be useless in disambiguation. It is difficult for a
relatively small® team of lexicographers to keep up with the wide range of meanings

used in the real world.

6.2.1 Hypothesis

WordNet can be a useful tool in disambiguating search engine results.

9Small, that is, relative to the vast universe of English speakers.
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Figure 6.9: Disambiguation of Web Page Results on a Query for a Specific Word X
Using WordNet

1.

2.

Find all the meanings of the word X in WordNet

For each meaning M of X, concentanate the synset (set of synonyms), the gloss
(dictionary definition) and the usage examples, and remove words on the stop
list. Transform this concatenation of words to a normalized term vector, as
described in Section 2.7. Call this vector m.

Find all the Web pages returned by a search engine in response to a query of
X.

Extract the text from each Web page, and transform it to a normalized term
vector. Call this vector w.

Consider all dot products m - w. For each W, assign it to the meaning M for
which it has the highest value of m - w.

6.2.2 Method

A simple disambiguation algorithm using WordNet would be the following: Consider

a search for a word X and the results set returned by a search engine from a query

of X. Then consider all the meanings of X in WordNet. Take the synset (set of

synonyms), the gloss (dictionary definition), and the usage examples given for each

meaning in WordNet and transform the concatenation of these three things into into a

normalized term vector (after removing words on the stop list). Then do the same for

each of Web pages that are returned by the search. For each page, classify it with that

meaning with which it has the highest dot product (vector similarity). Compare the

results with a manual classification to determine performance. This disambiguation

technique is outlined in pseudocode in Figure 6.9.
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6.2.3 Results on the Ambiguous Query “Speaker”

Because WordNet does not have data about the major meanings of the three words
that we have been working with up until now, I decided to test it with a common word
for which it would have some of the major meanings. The word “speaker” has three
meanings in WordNet, which all derive from the underlying meaning of “to speak” in

different contexts. They are:

1. speaker, talker, utterer, verbalizer, verbaliser — (someone who expresses in lan-
guage; someone who talks (especially someone who delivers a public speech or
someone especially garrulous); “the speaker at commencement”; “an utterer of

useful maxims”)

2. loudspeaker, speaker, speaker unit, loudspeaker system, speaker system — (“electro-
acoustic transducer that converts electrical signals into sounds loud enough to

be heard at a distance”)

3. Speaker — (the presiding officer of a deliberative assembly; “the leader of the

majority party is the Speaker of the House of Representatives”)

The above three definitions are WordNet’s actual output for the dictionary query
“speaker,” consisting of the synset (set of synonyms) and the gloss (definition); the
gloss may, in some cases, contain usage examples. However, even these three meanings
do not cover all of the meanings of the word “speaker” found on the Web. A Google
search for the word “speaker” returns about 4.7 million results. The first result is for
a newspaper which is called the “Standard Speaker” and therefore does not really fit

into any of the above three meanings of the word. The second and third results are
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for loudspeakers and the Speaker of the House in Texas, but the fourth result is a
page about a text-to-speech computer program called Speaker. The twelfth result is
for another newspaper with “Speaker” in its name.

I used the Lycos search engine for this experiment.!® Lycos gave a similar mix
of pages, in terms of their distribution among the various meanings of “speaker.” I
classified the pages manually. Of the first 100 pages returned by Lycos, over half (51)
are pages about loudspeakers (there is a lot of interest in loudspeakers on the part
of Internet users). 30 pages refer to human speakers of one sort or other (other than
“Speakers of the House”); most of these are home pages of motivational speakers or of
speakers’ agents or bureaus. Six pages were associated with Speakers of the House,
on either the federal or the state level. Finally, 13 pages did not fit into any of these
categories. A batch retrieval program was able to retrieve 97 of the 100 pages; of the
three that were not retrieved, two were among the 13 that did not fit any of the three
meanings, and one was in the “human speaker” meaning (meaning #1).

I applied the WordNet-based algorithm described in Figure 6.9. Disregarding the
13 pages that did not correspond to one of the 3 meanings, and the one other page
that did not retrieve, this leaves a total of 86 pages. By chance, classification into 3
categories should get one-third of these, or almost 29, correct. In fact, this algorithm
got 58 correct, or about 67 percent of those pages that were known to be in one
of the three categories before automatic classification, about twice what it could be
expected to get by chance. The confusion matrix for the three meanings is given in

Table 6.7.

00n the particular day I was searching, my batch program was not working well in retrieving
pages from Google, so I switched to Lycos. For a task like this, there is no particular reason, that I
know of, to choose one search engine over another.
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Table 6.7: Confusion matrix for WordNet-based classification of three meanings of
the word “speaker”

Automatic Classification
Manual Classification | total | human loudspeaker | Speaker of the
speakers House
human speakers 30 |8 13 9
loudspeakers 51 |4 45 2
Speaker of the House 6 0 1 5

I did three searches on Google to attempt to disambiguate results: the search
strings were: “speaker public speech,” “loudspeaker,” and “speaker house.” These
strings were drawn from words in the three WordNet meanings, using my own judg-
ment. In all three cases, in my judgment, the vast majority of the pages returned
were reflective of that meaning. This indicates that WordNet can be quite useful in
query refinement, if a proper interface is built to allow the user to select additional
terms. However, one cannot simply throw all the words in a definition at a search
engine, because the search engines typically use a brittle (all-or-nothing) rather than
a fuzzy logic [129] to match pages against word strings. And the success of the query
refinement would depend heavily on the sophistication of the user in selecting addi-
tional terms. As we have already seen, it also depends heavily on WordNet having the
meaning of the original term that the searcher had in mind in its database. WordNet
would be a more useful tool if a good deal of additional energy was invested into
making it closer to an encyclopedia rather than simply a dictionary, and if it was
made to contain much information about culture and about proper names.

Note that the level of polysemy of a word tends to be directly related to its

commonness in the language. Thus common, short words such as “line” and “hard”
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have a lot of meanings in WordNet; “line” has 29 meanings as a noun and seven
as a verb; “hard” has 11 meanings as an adjective and ten as an adverb. Many of
these meanings are close to one another; for instance “hard” can mean “vigorous” or
it can mean “arduous”; here the difference is only one of degree. So the process of

disambiguation becomes difficult and fuzzy [78].

6.2.4 Results on the Ambiguous Query “Bear”

Another example of an ambiguous word is the word “bear.” According to WordNet,
“bear” has two meanings as a noun and thirteen meanings as a verb. As a noun,
“bear” can refer to the carnivorous animal or the investor in the stock market who
believes that prices will decline. As a verb, two of the meanings of “bear” are to give
birth (“bear a child”) and to carry (“bear a load”).

Here, we will be concerned with disambiguation of the two noun meanings stated
above (as we will see below, there are other metaphorical noun meanings that Word-
Net does not list; one of the main problems in AI and cognitive science, is in dealing
with such metaphorical use of language, which is highly prevalent, see for example,
[62]'!), ignoring all of the verb meanings. However, we will use a somewhat elaborated
method of disambiguation than we used with the example of “speaker” above.

We will not consider just the synonym set, gloss, and usage examples associated

with the meaning of a word, but in addition, its semantic neighborhood. Here, I define

HTakoff and Johnson [62] point out that the use of metaphor is highly prevalent in language and
structures the way we think about language. For instance, we use metaphors from war to describe
arguments; e.g. “I demolished his argument.” This makes it difficult for automated systems that
have at best a surface knowledge of language, on the level of word correlations, to do a very good
job of disambiguation, because the machine can easily mistake a metaphorical usage for a non-
metaphorical one. An understanding of the deeper meaning of the metaphor would be necessary to
have the machine truly understand the context of such language use.
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the semantic neighborhood of a noun as its immediate hyponyms, hypernyms, and
coordinate terms (the latter are “sisters”; that is, other children of their immediate
hypernym or parent). I am still using the same algorithm described in Figure 6.9.
However, I am adding to the word stems mentioned in step 2 of that figure all of the
word stems from the semantic neighorhood so defined.

I could define the semantic neighborhood more widely if I chose, for instance,
going further up or down the chain of specificity and including more coordinate terms
at each level, or by following keywords in the definitions for other words related to
them, but I did not do that in this experiment, to keep it relatively simple.

For the sense of “bear” as a carnivorous animal, its immediate hypernym (“par-
ent”) is the word “carnivore.” Its immediate hyponyms (“children”) includes a list
of specific bears, including the brown bear, the bruin, the American black bear, the
Asiatic black bear, the polar bear, and the sloth bear. Its coordinate terms are other
types of carnivores, including canines, felines, and some other more esoteric ones,
such as “musteline mammal” and “fissiped mammal.” This WordNet neighborhood is
illustrated in Figure 6.10. The definition given by WordNet is the following: “massive
plantigrade carnivorous or omnivorous mammals with long shaggy coats and strong
claws.”

For the sense of pessimistic investor, its hypernym is “investor.” WordNet knows
about no immediate hyponyms (this is already quite a specific term). Its coordinate
terms are terms that are also investors, of different types. WordNet gives the following:

PE 13

“contrarian,” “bondholder,” “bull,” “caller,” “depositor,” “lender,” “rentier,” “loaner,”
“stockholder,” “shareholder,” “shareowner.” Some of these terms are synonyms of one

another, for instance, the last three listed. The antonym of “bear”—“bull”—is also a
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Figure 6.10: A Portion of WordNet Around the Word “Bear,” for its Animal Sense

Hypernym (Parent) of “Bear” (and its Coordinate Terms):
Carnivore

\

Coordinate Terms of “Bear”:

Bear Feline Canine “Musteline Mammal” “Fissiped Mammal”

I

Hyponyms (Children) of “Bear”
Brown Bear Bruin ‘“American Black Bear” “Asiatic Black Bear” etc.

coordinate term. The definition given by WordNet is the following: “an investor with
a pessimistic market outlook.”

Thus, if we consider the two semantic neighborhoods constructed from these two
meanings, we can anticipate that they would do quite a good job in distinguishing the
two meanings. For each term in each semantic neighborhood, it appears much more
likely that that term would appear on pages that are about that particular meaning
rather than the other one. For instance, the word “bondholder” would be more likely
to appear on a page that uses the word “bear” in the context of investing; the phrase
“polar bear” and the word “polar” would be more likely to appear on pages about
bears in the context of the animal. Of course, since the investor meaning of the word
is metaphorical and is probably drawn from the proverb “selling the skin before you
have caught the bear” [34], one is likely to see some “cross-talk” between the two
meanings, as we saw in the case of the metaphorical uses of the word “jaguar.” For

instance, a bear market might be described as a man-eating carnivore.
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I did a Web search on Lycos for “bear” and retrieved the top 300 results. It turns
out that the vast majority of these results are not about either of the meanings listed
above. The single largest number of pages were about Teddy bears or children’s
cartoon bears. While in a sense these are bears, I did not classify them as such.
There are also a lot pages about places named after bears, such as towns, ski resorts,
or various companies named after bears. Apparently, some large, hirsute gay men
consider themselves bears (in a metaphorical sense) and there are a fair number of
pages devoted to this. There are a fair number of pages that show up because they
are about the right to bear arms. There are relatively few pages about the animal—
definition one—and even fewer about the investor—definition two. This is another
example of how when you search, you seldom find what you think you will. During
my manual classification, I classified all pages that were not directly about the animal
or the investor into a third category—"other.”

Of the 300 search results, only 20 are about the animal, and only five are about the
investor meaning. It is not because these meanings are not prevalent on the Web—in

7 “grizzly bear,” or “bear market”) do

fact, more focused searches (such as “black bear,
a much better job of pulling out plenty of pages that are on these topics. It is just
that they are drowned out by the other meanings when the simple query “bear” is
given.

I followed Lycos’s 300 hyperlinks, and was able to retrieve the Web pages for all
but 21 of them, for a total of 279. The vast majority of these were classified in the
animal class by the WordNet-based semantic neighborhood algorithm, as we can see

from the confusion matrix shown in Table 6.8.

Here, the separation of the second meaning, “investor,” is not terrific. Of course,
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Table 6.8: Confusion matrix for Classification of two noun meanings of the word
“bear”

Automatic Classification
Manual Classification | Total | animal investor
animal 19 19 0
investor 5 2 3
other 255 247 8

the sample is very small, which is part of the problem. The other part of it, I discov-
ered by looking at the pages in question, is that use of metaphorical language (refer-
ring to the animal; e.g. the phrase “the bear devoured the market”) on pages actually
about investors is as prevalent as it is on other pages that are about metaphorical
bears. Also, the strength of the word “bear” in the vector representing the semantic
neighborhood for the animal is particularly strong, because the word “bear” occurs
multiple times in this neighborhood as different kinds of bears are listed. One way
to counteract this might be to allow each word to be represented equally in this
vector, instead of according to its frequency in the WordNet text of the semantic
neighborhood.

It turns out if you do this—have each term represented equally in the vector—4
out of the 5 of the pages about investors are correctly classified, and for the remaining
one, the animal meaning edges out the investor meaning only barely. However, this
comes at the expense of mis-classifying 8 of the 19 pages about the animal as investor
pages, so this is not a desirable improvement on the algorithm, at least in this case;
too high a price to pay to classify just one more page correctly.

It turns out that the main reason for this mis-classification is that the word “bear”
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is no longer as heavily weighted in the term vector representing the semantic neighbor-
hood for the animal, since all terms are now equally weighted, and it is more heavily
weighted in the vector representing the semantic neighborhood for the investor, be-
cause there happen to be, in this case, fewer terms in the latter neighborhood (and
the vectors are normalized). This results in a greater dot product for those pages
that have the word “bear” appearing frequently, which are obviously quite a large
fraction of the 300 pages, given that “bear” was the search query. It might be possible
to counteract this by counting each term on each page just once for the purposes of

forming the term vector, but I did not try this.

6.2.5 Discussion

Adjacent word pairs can be useful in separating out different meanings of words where
single words fail, and can be particularly helpful in a scenario where the desired mean-
ings are relatively sparse in the overall search results. A program to extract the adja-
cent word pairs from the 300 pages, ignoring words on the stop list, resulted in slightly
over 30,000 two-word combinations. If you consider only the word combinations that
contain the word “bear,” there are still over 1,500 such word pairs.

WordNet was not specifically designed for doing disambiguation/separation; it
might be a useful project to create sets of keywords or keyword pairs that specifically
characterize sets of pages on the Web, although this would be a project of a similar
difficulty as WordNet itself. Alternately, WordNet itself could be augmented with
such keywords or word pairs. Word pairs or short phrases would probably be best
because they tend to be less ambiguous than single words. Thus, the entry for the

animal “bear” could be augmented by such word pairs or phrases.
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However, in a sense, WordNet already contains such phrases, and could be used
as an interface to search. In the first step of the search, one would use it like a
dictionary, and it would list each of the meanings of the word. The searcher would
then select a meaning, and WordNet would find all of the hyponyms of that meaning.
It would then use a fuzzy disjunction of those hyponyms to find pages referring to
that meaning. In the case of the animal meaning of “bear,” such hyponyms are “black

L

bear,” “polar bear,” “sloth bear,” etc. A disjunctive search for any or all of these
meanings will work quite well, especially if those pages that have as many of these
phrases as possible would be listed first.

Of course, the searcher would have to pay the extra price of working through a
guided search, and many searchers have little patience for such things. Also, the
implementation of the search engine would have to be different than that the search
engines of which I am aware. This because it would have to be based on a scoring
system where pages are ranked higher based on the number and frequency of the
presence of the various keywords or keyphrases; that is, a page gets a higher score if
it contains more of the keyphrases, in a higher frequency. A simple disjunction will
not work; for instance, the disjunction used by AltaVista does not rank the results in

this manner; instead, it lists pages that only have one of the items in the disjunction

first, inexplicably. Some other search engines do not offer true disjunctive search at

all.

6.2.6 The Use of Two-Word Combinations Involving “Bear”

We can try to use these two-word combinations involving “bear” to try to separate out

the 300 results we found above. This is a partial test of the above proposal to use the
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WordNet hyponyms, since many of the keyword pairs are similar to the hyponyms, or
at least to concepts that are associated with the central one. The top fifteen keyword

M«

pairs involving the word “bear” are: “big bear,” “Teddy bear,” “grizzly bear,” “bear

arms,” “bear lake,” “Smokey bear,” “bear valley,” “black bear,” “bear mountain,” “arm

bear,” “billi bear,” “bull bear,” “dancing bear,”

and “bear recovery.” Only three of
these: “black bear,” “grizzly bear,” and “bear recovery” directly reflect the animal
meaning of the word “bear.” Only one, “bull bear,” reflects the investor meaning.
(Note that since stop words are eliminated before the computation of the word pairs,
phrases like “bull and bear” can lead to “bull” and “bear” being considered adjacent,
since “and” is on the stop list.)

“Grizzly bear” is present in seven of the 20 pages about the animal, and one
page that is not. “Black bear” is present in five of the 20 pages, and five that are
not. In three pages, both words are present. Thus both words together will cover 9
pages. Here we have another familiar example of the often (but not always) occurring
recall /precision trade-off; including more of such (two word) phrases in the disjunction
often increases recall at the expense of precision, since a wider net is also cast.

Considering the investor meaning: the two word phrase “bull bear” was found
on two pages of the five that were about this meaning, and one page that was not.
The two word phrase “bear market,” which appeared to be the next most common
two word phrase that was on the investor topic, was also found on two of the five;
a different two. Thus again, we have increased recall by using a disjunction. Here,

however, luckily, precision is also not harmed; in fact, it is improved.
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6.3 Using Semantic Networks for Clustering

A HAL-style semantic network [17] (see Section 2.9.2 for a description of such net-
works) constructed out of a set of Web pages that are the response to a search engine
query can be used to refine this query, in order to make it less ambiguous. Techniques

for doing so are detailed in this section.

6.3.1 A HAL Matrix for “Jaguar”

Tables 6.9 through 6.12 show one dimension of such a HAL-style matrix, centered on
the word “jaguar”, constructed from Web pages that are the result of a query on that
word.

The HAL matrix shown in Tables 6.9 through 6.12 does not eliminate “stop words;”
doing so would reduce noise, at the possible expense of removing salient stop words
that are particularly related to a specific query. Eliminating stop words would get
rid of quite a few of the words in Tables 6.9 through 6.12, but I have left them in
because the HAL algorithm does not eliminate them. However, as we will see below,
it may be profitable to eliminate them for further analysis.

This list of words indicates (as did the exploration of the Web pages through
cluster analysis of the link structure), that the pages are not equally distributed on
the various topics. Most of the words in Tables 6.9 through 6.12 are related to the
automotive meaning of the word “jaguar;” the second largest number are related to the
video game meaning, and the smallest number, ironically, to the original zoological

meaning of the word.



208

Table 6.9: One Dimension of the HAL-Style Matrix Relative to the Word “Jaguar”

(Words 1-50)

‘ rank ‘ word ‘ score ‘ rank ‘ word ‘ score ‘
1 jaguar 20637 | 26 system 1444
2 type 6270 | 27 usa 1440
3 game 5407 | 28 sale 1304
4 club 5185 | 29 classic 1301
5 the 4039 | 30 links 1293
6 cars 3898 | 31 dinky 1285
7 part 3767 | 32 driver 1263
8 Xj 3167 | 33 bit 1236
9 atari 2583 | 34 howard 1202
10 site 2530 | 35 control 1143
11 volvo 2442 | 36 it 1110
12 models 2405 | 37 series 1103
18 web 2385 | 38 rings 1099
14 dealership | 2310 | 39 we 1087
15 news 2141 | 40 home 1058
16 owners 1984 | 41 unit 1046
17 developing | 1894 | 42 here 1013
18 world 1797 | 43 this 987
19 server 1622 | 44 racing 985
20 click 1568 | 45 power 952
21 xk 1542 | 46 sedan 943
22 rates 1537 | 47 informative | 942
23 cd 1495 | 48 lynx 939
24 pages 1491 | 49 jag 936
25 enthusiast | 1457 | 50 corgi 934
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Table 6.10: One Dimension of the HAL-Style Matrix Relative to the Word “Jaguar”

(Words 51-100)

rank ‘ word ‘ score ‘ rank ‘ word ‘ score ‘
51 luxury 911 76 including | 692
52 related 905 77 checks 671
53 association | 902 78 see 667
54 converter | 897 79 times 655
55 tour 865 80 programs | 650
56 york 863 81 interactive | 648
57 logo 858 82 played 642
58 collector 852 83 order 638
59 manhattan | 844 84 support 637
60 orloff 836 85 ii 631
61 skunk 819 86 forum 630
62 daimler 813 87 coupe 628
63 special 803 88 nyc 619
6/ community | 798 89 pre 617
65 radiator 778 90 get 617
66 specialist | 766 91 year 616
67 all 761 92 use 598
68 automobilia | 754 93 list 597
69 find 752 9/ uks 596
70 scale 751 95 owned 584
71 in 747 96 there 581
72 xke 747 97 release 578
78 mk 709 98 codes 572
74 for 708 99 opinions 571
75 design 708 100 | cartridge 569
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Table 6.11: One Dimension of the HAL-Style Matrix Relative to the Word “Jaguar”

(Words 101-150)

‘ rank ‘ word ‘ score ‘ rank ‘ word ‘ score ‘
101 cat 564 | 126 reviews 493
102 | peripherals | 559 | 127 speed 491
108 top 558 | 128 title 487
104 working 555 | 129 mail 485
105 faq 551 | 130 people 483
106 photo 9500 | 131 automobile | 483
107 inline 541 | 132 provided 482
108 | jazzmaster | 536 | 133 ranges 481
109 one 535 | 184 | performance | 479
110 vr 535 | 135 restoring 476
111 updates 527 | 136 names 470
112 details 525 | 187 video 466
113 make 516 | 138 quick 465
114 discussion | 513 | 139 bytecode 462
115 wanted 511 | 140 project 461
116 collection 510 | 141 service 457
117 register 510 | 142 spotted 456
118 console 507 | 1438 section 452
119 engine 506 | 144 vote 447
120 software 506 | 145 sold 444
121 visiting 500 | 146 made 443
122 source 497 | 147 you 441
123 main 495 | 148 quote 432
124 mr 494 | 149 history 431
125 diecast 494 | 150 official 427
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Table 6.12: One Dimension of the HAL-Style Matrix Relative to the Word “Jaguar”
(Words 151-200)

‘ rank ‘ word ‘ score ‘ rank ‘ word ‘ score ‘
151 virtual 426 176 | books 384
152 front 425 177 | coat 372
158 | programmers | 425 178 | wedding 372
154 line 422 179 | group 372
155 cheats 421 180 | re 371
156 port 421 181 | members 371
157 hardware 420 182 | machines 369
158 high 418 183 | full 367
159 sovereign 414 184 | last 367
160 runs 414 185 | hunt 365
161 features 414 186 | animals 364
162 magazine 411 187 | north 360
163 websites 409 188 | edition 360
164 america 408 189 | these 358
165 network 407 190 | our 358
166 conversions | 406 191 | coventry 356
167 info 400 192 | ibm 355
168 typ 397 193 | computers 353
169 board 397 194 | architecture | 352
170 company 395 195 | jungle 352
171 Itd 395 196 | original 352
172 leopards 392 197 | lair 352
178 pictured 391 198 | what 352
174 joined 389 199 | purchase 349
175 iii 385 200 | longer 348
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6.3.2 Finding Word Correlates for Use in Query Refinement

The HAL matrix allows one to examine the top correlates of each word. In Tables 6.9
through 6.12, the top word that is involved with the automotive meaning of the word
is “type,” because some Jaguar automobile models are named “S-type,” “X-type” etc.
The top word that is involved with the video game meaning is “game.” The top word
that is involved in the animal meaning is “cat,” but this is only the 101st word on the
list.

Generation of such a HAL-style list of query word correlates may assist the user in
query refinement. If the list of m such words is displayed to the user, she may select,
using check-boxes, those n (of the m) words which would assist in refining the query.
Then all the selected words would be combined with the initial query word in order
to refine the query. I have not implemented such a system yet. However, one could
evaluate and tune such a system by having the user provide feedback on the quality
q of each refinement, seeing for each of a set of values of m, and a set of values of
n within each m, what the relation ¢ = F'(m,n) is, empirically. A third parameter,
k, could be the number of words that were put in the query to be ezcluded from the

results.'?

6.3.3 Top Correlates of Salient Words for “Jaguar”

Another approach is to see what words are correlated with any of the top words

correlated with initial query word. For instance, the top 10 words correlated with

P13

the word “game” are: “jaguar,” “played,” “Atari,” “the,” “system,” “developing,” “boy,”

“console,” and “control.” (The word “boy” appears because the portable video game

12This idea for future work comes in part from Jude Shavlik.
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“Game Boy” is on many Web pages that are about video games.) Clearly, other than
“the” (which can be eliminated using a stop list), a query involving these words would
pull out pages that are specifically about video games, and that mention the Atari
Jaguar, while not pulling up pages from the other two major meanings evoked by the
query “jaguar” alone. I have run such a query on Google and it does bring up a very
focused set of pages.

Similarly, the top ten words correlated with the word “cat” are: “jaguar,” “the,”

”

“box,” “pictured,” “black,” “endangered,” “pages,” “animals,” “coat,” and “hat.” This
group of words does not make for a very good query for pulling out the original feline
meaning of jaguar, because, it appears, too many of the automotive pages pull refer
to cats as a metaphor. However, most of the pages that are pulled up by a Google

query of “jaguar cat” are about the feline meaning.

The top ten words that are correlated with the word “type”, which is the top-
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ranked word for the automotive meaning, are: “jaguar,” “mk,” “usa,” “series,” “xj,

bAINAA

“sale,” “the,” “cars,” “part,” and “for.” Doing a Google query with these words, minus
“the” and “for” and plus “type” itself, leads to pages that are mainly about the car.
Query refinement, of course, will work best if it uses a combination of automatic and
user-driven selection of queries. A user who is a Jaguar automotive enthusiast will

be able to select a good combination of these query words, even if she did not think

of them initially. The system can prime her memory.

6.3.4 A HAL Matrix for “Ford”

Tables 6.13 through 6.16 show a single dimension, with respect to the word “Ford,” of

a HAL matrix constructed from a search engine result set of Web pages from a query
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on that word. As in the case of the “jaguar” pages, the “Ford” pages reflect an uneven
distribution of keywords corresponding to the different meanings of the word “Ford.”
The largest number of keywords are related to the Ford Motor Co, Henry Ford, the
Ford Foundation, and related topics. Then there are various other meanings, the
most frequently reflected being that of President Gerald Ford, and then other figures
such as the actor Harrison Ford, the director John Ford, the model Patricia Ford, and
the author Ford Madox Ford. There is also Ford’s Theatre, where Lincoln was shot.
There are also Web pages about counties named Ford, which exist in Illinois and in
Kansas, at least.

In terms of the two most common meanings of the word “ford” in terms of query
results, the “Ford Motor” meaning is reflected first by word number two in Tables
6.13 through 6.16 , “motors,” and the the “Gerald Ford” meaning is reflected best
by the word “president,” which is word number 19 in Tables 6.13 through 6.16. The
word “library,” which appears as word number ten in Tables 6.13 through 6.16, is not
unambiguously about the Gerald Ford Presidential Library, because there are other

libraries with “Ford” in their name that are named after other people named Ford.

6.3.5 Top Correlates of Salient Words for “Ford”

If the user identifies either of these two words—‘motors” or “president”—for use in
query refinement, the system can then suggest additional words. The top 15 words

associated with “motors” are (after eliminating stop words): “company,” “Ford,” “rac-
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ing,” “firestone,” “please,” “affiliate,” “iframe,” “Ferguson,” “models,” “credits,” “re-

bAANAA

placement,” “club,” “Henry,” “vehicle,” and “copyright.” Most of these have an auto-

motive meaning, and the user could select them for further query refinement. The top
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Table 6.13: One Dimension of the HAL-Style Matrix Relative to the Word “Ford”

(Words 1-50)

rank ‘ word ‘ score ‘ rank ‘ word ‘ score ‘
1 ford 11186 | 26 museums 996
2 motors 3688 | 27 bell 978
3 the 2932 | 28 all 974
4 part 2918 | 29 we 946
5 company 2816 | 30 informative | 872
6 county 2727 | 31 owners 856
7 trucks 2574 | 32 vehicle 856
8 harrison 2081 | 33 capri 847
9 site 1910 | 34 credits 837
10 library 1783 | 35 exploring 822
11 foundation | 1700 | 36 john 819
12 club 1528 | 87 home 817
13 web 1491 | 38 one 779
14 mercury 1424 | 39 film 778
15 pages 1407 | 40 movies 767
16 models 1404 | 41 made 762
17 cars 1307 | 42 mustang 752
18 click 1202 | 43 service 752
19 president 1162 | 44 pickups 744
20 fellow 1149 | 45 historical 730
21 news 1109 | 46 society 730
22 theatre 1108 | 47 racing 705
28 creek 1050 | 48 lincoln 703
24 tractor 1037 | 49 consul 692
25 taurus 1009 | 50 year 689
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Table 6.14: One Dimension of the HAL-Style Matrix Relative to the Word “Ford”

(Words 51-100)

‘ rank ‘ word ‘ score ‘ rank ‘ word ‘ score ‘
51 patricia 683 76 price 562
52 pictured 676 77 books 552
53 working 673 78 related 547
54 engine 668 79 directions | 546
55 this 664 80 fellowship | 537
56 search 650 81 copyright | 536
57 performance | 650 82 globe 524
58 post 649 83 sale 523
59 school 646 84 register | 523
60 colony 640 85 links 510
61 gerald 639 86 here 509
62 guests 639 87 no 503
63 inc 630 88 probe 501
64 fleet 612 89 celebrity | 492
65 center 612 90 family 492
66 conservancy | 611 91 about 490
67 diesel 605 92 com 486
68 america 586 93 for 484
69 biography | 582 94 programs | 483
70 fans 578 95 members | 481
71 award 576 96 firestone | 479
72 dealers 574 97 contact 458
74 rates 567 99 july 457
75 manager 564 100 | accessories | 456
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Table 6.15: One Dimension of the HAL-Style Matrix Relative to the Word “Ford”

(Words 101-150)

‘ rank ‘ word ‘ score ‘ rank ‘ word ‘ score ‘
101 classic 451 | 126 galaxy 391
102 visiting 449 | 127 quote 390
108 born 448 | 128 henry 388
104 produced 445 | 129 power 385
105 mail 440 | 130 series 385
106 houses 438 | 131 you 384
107 ranch 437 | 132 list 380
108 gallery 432 | 133 sterling 377
109 events 432 | 184 tires 377
110 ranger 429 | 185 owned 376
111 councils 426 | 136 free 375
112 welcome 426 | 187 thanks 374
113 called 425 | 138 online 374
114 design 424 | 139 june 372
115 | productive | 423 | 140 | filmography | 371
116 | replacement | 423 | 141 co 371
117 photo 422 | 142 line 369
118 | dissertation | 419 | 148 custom 368
119 viewed 418 | 144 auto 367
120 if 411 | 145 | automobile | 366
121 south 408 | 146 support 365
122 mans 403 | 147 publish 363
128 he 402 | 148 madox 362
124 won 396 | 149 world 361
125 make 395 | 150 history 360
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Table 6.16: One Dimension of the HAL-Style Matrix Relative to the Word “Ford”
(Words 151-200)

‘ rank ‘ word ‘ score ‘ rank ‘ word ‘ score ‘
151 campaigns | 360 176 directors 317
152 rings 359 177 rights 316
158 ann 359 178 predoc 312
154 | presidential | 358 179 fact 311
155 webring 351 180 philes 304
156 and 351 181 joined 302
157 collection | 351 182 internal 301
158 order 350 183 diss 300
159 day 349 184 party 299
160 laser 349 185 offers 299
161 places 341 186 | administrator | 297
162 email 339 187 slant 296
163 unit 335 188 garden 295
164 actor 335 189 policy 293
165 top 333 190 heritage 293
166 super 333 191 please 292
167 | personally | 332 192 thirty 290
168 | comparing | 328 193 congress 289
169 left 328 19/ falcon 289
170 1td 326 195 sables 288
171 | association | 325 196 ferguson 288
172 | introduced | 324 197 tech 287
178 canada 324 198 mason 287
174 | automotive | 321 199 locations 284
175 passenger | 321 200 official 283
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15 words associated with “president,” again after eliminating stop words, are: “Ford,”

7 bOINAY 7

“Nixon,” “presidential,” “Gerald,” “unit,” “Lincoln,” “national,” “visiting,” “american,”

“select,” “history,” “library,” and “scouting.” Most of these have a meaning associated

with Gerald Ford.

6.3.6 A HAL Matrix for “Lincoln”

Tables 6.17 through 6.19 show the single dimension, with respect to the word “lincoln,”
of a HAL matrix constructed out of Web pages that were retrieved in response to that
word. As in the case of the “jaguar” and “Ford” keyword sets, the “Lincoln” keywords
do not reflect an even distribution of the various meanings of “Lincoln.” Instead, they
reflect the two most frequently occurring meanings, which are those reflecting Abra-
ham Lincoln and Lincoln, Nebraska. Some of the keywords occur in several meanings;
for instance, the word “county” appears in pages about Lincoln County, Oregon and
also Lancaster County, Nebraska, which contains Lincoln, Nebraska. Keyword #4,
“Abraham,” pulls out the “Abraham Lincoln” meaning quite cleanly; keyword #30,
“Nebraska,” pulls out the “Lincoln, Nebraska” meaning, and keyword #54, “cars,”
pulls out the meaning that refers to the Ford Motor Company’s Lincoln brand of
cars. Other meanings occurring in the keywords in Tables 6.17 through 6.19 include
the various other places named after Lincoln, various universities and colleges named

Lincoln, and the Abraham Lincoln brigade, which fought in the Spanish Civil War.
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Table 6.17: One Dimension of the HAL-Style Matrix Relative to the Word “Lincoln”

(Words 1-50)

rank ‘ word ‘ score ‘ rank ‘ word ‘ score ‘
1 lincoln 19571 | 26 highway 1559
2 county 9965 | 27 continental | 1529
3 the 7476 | 28 memory 1514
4 abraham 4333 | 29 online 1512
5 city 4036 | 30 nebraska | 1503
6 center 3568 | 31 research 1484
7 president 3520 | 32 university | 1473
8 site 2874 | 33 moved 1460
9 library 2714 | 384 houses 1435
10 assassin 2328 | 35 year 1362
11 national 2177 | 36 community | 1316
12 life 1933 | 37 web 1311
13 election 1933 | 38 douglas 1306
14 news 1900 | 39 di 1254
15 club 1884 | 40 in 1248
16 school 1849 | 41 nes 1246
17 mark 1828 | 42 war 1185
18 illinois 1775 | 48 born 1164
19 home 1767 | 44 inaugural | 1142
20 park 1761 | 45 address 1128
21 mary 1709 | 46 this 1102
22 family 1706 | 47 publicity | 1078
23 informative | 1690 | 48 gettysburg | 1064
2/ links 1655 | 49 live 1063
25 state 1626 | 50 all 1063
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Table 6.18: One Dimension of the HAL-Style Matrix Relative to the Word “Lincoln”

(Words 51-100)

‘ rank ‘ word ‘ score ‘ rank ‘ word ‘ score ‘
51 speeches | 1046 | 76 indiana 804
52 pages 1044 | 77 government | 798
53 town 1030 | 78 quote 797
5/ cars 1028 | 79 williams 788
55 todd 1025 | 80 board 787
56 student 1000 | 81 son 787
57 american | 949 82 bytes 780
58 part 933 83 history 779
59 search 932 84 thomas 779
60 biography | 918 85 historical | 772
61 paper 892 86 law 770
62 logging 891 87 places 767
63 robert 874 88 our 766
64 regions 861 89 college 760
65 service 859 90 springfield | 754
66 association | 858 91 working 753
67 we 849 92 washington | 747
68 locations | 838 93 republican | 743
69 civilization | 825 94 questions | 737
70 edition 821 95 john 729
71 offers 818 96 generally | 724
72 unit 818 97 nominated | 724
78 for 816 98 mans 705
74 one 816 99 campus 699
75 mr 807 100 websites 696
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of the HAL-Style Matrix Relative to the Word “Lincoln” (Words

‘ rank ‘ word ‘ score ‘ rank ‘ word ‘ score ‘
101 street 691 | 126 support 991
102 | including | 686 | 127 | department | 589
108 special 685 | 128 programs 587
104 tomb 680 | 129 virtual 585
105 day 678 | 130 father 576
106 books 675 | 131 and 575
107 mail 670 | 132 co 574
108 | education | 668 | 133 make 563
109 wife 664 | 134 union 558
110 vote 659 | 135 OWNETS 555
111 rights 656 | 136 museums 552
112 debate 655 | 137 map 550
113 click 650 | 138 tad 546
114 phone 643 | 139 divides 544
115 | commerce | 639 | 140 brigade 540
116 study 637 | 141 save 534
117 medic 635 | 142 white 532
118 congress 627 | 143 death 529
119 chamber 625 | 144 slavery 525
120 | resources | 624 | 145 | emancipation | 525
121 married 616 | 146 business 521
122 beachey 615 | 147 times 521
128 gave 614 | 148 boyhood 520
12/ photo 609 | 149 line 515
125 ford 602 | 150 april 512
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Table 6.19: One Dimension of the HAL-Style Matrix Relative to the Word “Lincoln”
(Words 151-200)

‘ rank ‘ word ‘ score ‘ rank ‘ word ‘ score ‘
151 campaigns | 360 176 directors 317
152 rings 359 177 rights 316
158 ann 359 178 predoc 312
154 | presidential | 358 179 fact 311
155 webring 351 180 philes 304
156 and 351 181 joined 302
157 collection | 351 182 internal 301
158 order 350 183 diss 300
159 day 349 184 party 299
160 laser 349 185 offers 299
161 places 341 186 | administrator | 297
162 email 339 187 slant 296
163 unit 335 188 garden 295
164 actor 335 189 policy 293
165 top 333 190 heritage 293
166 super 333 191 please 292
167 | personally | 332 192 thirty 290
168 | comparing | 328 193 congress 289
169 left 328 19/ falcon 289
170 1td 326 195 sables 288
171 | association | 325 196 ferguson 288
172 | introduced | 324 197 tech 287
178 canada 324 198 mason 287
174 | automotive | 321 199 locations 284
175 passenger | 321 200 official 283
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6.3.7 Top Correlates of Salient Words for “Lincoln”

For the keyword “Abraham”, the top 15 correlated keywords, after removing stop

” W 7« ” o« ”

words, are: “lincoln,” “president,” “mary,” “assassin,” “attending,” “born,” “national,”

bA N4

“online,” “research,” “school,” “year,” “life,” “todd,” “thomas,” and “paper.” Most of

these are relevant to Abraham Lincoln. For the keyword “Nebraska”, the top 15 corre-

boIN13

lated keywords, after removing stop words, are: “lincoln,” “acting,” “forecast,” “south-
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city,” “local,” “game,” “interlinc,” “pm,” “cycle,

” “clear,” “temperature,”

west,” “iowa,
“hixson,” and “sports.” These words appear because many of the pages are about
weather or sports (in Nebraska), and because Lincoln, Nebraska is near Iowa. For
the keyword “cars”, the top 15 correlated keywords, after removing stop words, are:

bA A4 W

“lincoln,” “club,” “cartier,” “year,” “mark,” “mercury,

bANA3

special,” “resources,” “added,”
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“show,” “continental,” “edition,” “marketing,” “inventories,” and “safety.” For the most
part, one can see how these words are related to the automotive meaning of “Lincoln.”
Some of them are clear upon further investigation; for instance, “Cartier” refers to a

special edition of the Lincoln Town Car.

6.3.8 HAL-Set-Partition: An Algorithm for Finding Sets of

Semantically-Related Words

A simple algorithm, which I will call HA L-Set-Partition, for separating out the sets of
words associated with each meaning of the query is the following. First, eliminate all
of the words on a stop list from the set of words under consideration. Then consider
any two words as “connected” if one of them appears within the top n words correlated

with the other, where n is a tuning parameter, disregarding self-links and links to the
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Figure 6.11: HAL-Set-Partition: An Algorithm for Finding Sets of Semantically-
Related Words

1. Consider a Web query on a single word, such as “jaguar”.
2. Consider a set of m Web pages that are the result of such a query.

3. Constuct a HAL matrix out of the words on these Web pages. (See Section
2.9.2 for a description of how this is done).

4. For each word w in this matrix, consider the top n other words w; in the matrix
correlated with it, in terms of the values in w’s dimension of the HAL matrix.
Consider w and each w; to be connected within an undirected graph.

5. Consider each of the connected components in this graph to represent a set of
semantically-related words.

original query word (here, “jaguar”), since the original query word is likely to connect
all these sets. Then construct sets out of the connected components of the graph
that is implied by these connections. This algorithm is analogous to the one we have
discussed above (described in Figure 6.5) that uses the link structure of the pages to

construct related sets. HAL-Set-Partition is given in pseudocode in Figure 6.11.

Figure 6.12: A Hypothetical Graph Output of HAL-Set-Partition
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Figure 6.12 shows a hypothetical graph output of HAL-Set-Partition. In this
figure, the circles represent distinct words. The connections represent pairs of words
for which one of the words appears on the list of the top n HAL-matrix correlates of
the other word.

A problem is that if that there are connections between the sets, such as that which
would be caused by the metaphorical use of the word “cat” in the automotive context,
then this algorithm may not work well. Perhaps, the use of the tuning parameter may
be able to compensate for this, by limiting the number of connections, but this may

also have the effect of disconnecting components that should be connected.

6.3.9 Application of HAL-Set-Partition to the “Jaguar”

Keywords

HAL-Set-Partition does not work particularly well for n = 2 or n = 3 in the case of
“jaguar,” although it works better for n = 2.

For n = 3, it separates all the words (341 of them that are among the top three
linked from the top 200 linked to “jaguar” itself) into 30 sets, which is many more
than would be desired. All of these except one have between two and five members,
and most of these small sets are not particularly good in terms of giving a a distinct
feel for the topic. There is also a large set with 251 members, and this contains words
from the animal, automotive, and video game senses of the word “jaguar,” as well as
at least one other sense, a Fender electric guitar named Jaguar.

For n = 2, there are 271 words, drawn from the top 2 linked from the top 200

linked to “jaguar” itself. Here, the algorithm does somewhat better. There are even
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Table 6.20: HAL-Set-Partition Results for “Jaguar”

n | number of words | number of sets set sizes
2 341 30 2-5 (29 sets); 241 (1 set)
3 271 86 2-5 (84 sets); 46 (1 set); 78 (1 set)

more sets, 86 in fact, which is what you would expect because the graph is not as
well-connected. As before, the vast majority of these—all except two sets—have two
to five members and do not generally do a good job of evoking any of the main
senses of “jaguar,” although the words within each set are typically related to one
another. However, there are two sets that do a good job of evoking two of the
senses of the word “jaguar,” the automotive sense and the video game sense. The set
that evokes the automotive sense has 46 members, and virtually all of these would
be found on Jaguar automobile page; one word that would not is “guitar,” which
appears because it is linked to the automotive set through the word “body,” since
both guitars and cars have bodies (and because there was a Fender electric guitar
named the Jaguar). The set that evokes the video game sense has 78 members, and
mainly contains words that would correspond to this sense, although there a few
words, like “showroom” and “service” that probably should have been associated with
the automotive meaning. “Showroom” is linked to “service” (since car dealerships have
service areas and showrooms), which is linked to “network,” which is linked to “game.”
Jaguar automobiles have a service network, and video games can be networked, so
“network” should really appear in both sets (with two different meanings), but this
algorithm does not allow it.

The reason why the original, animal, sense of “jaguar” is split between so many
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small sets is because there are relatively few words among the top 200 words in
the jaguar HAL list that relate to the animal meaning, compared to the other two

meanings.

6.3.10 Application of HAL-Set-Partition to the “Ford”

Keywords

I tested the HAL-Set-Partition algorithm with the “Ford” keywords, again for n = 2
and n = 3. In this case, the algorithm performed worse than it did in the case of
the “jaguar” keywords. For the case of n = 2, there was only one large set, with 142
members out of the 294 possible, but this set contained keywords from the various
meanings of “Ford.” All of the other sets were relatively small, and few of them
appeared that they would function well in teasing out any particular meaning of
“Ford.” However, there were these few: one of these was the set containing the three

o«

keywords “ranger,” “aerostar,” and “econoline,” which are are all Ford motor vehicle
models.

For the case of n = 3, again there was just one large set, with 270 out of 381
possible keywords, but again this large set combined several meanings of “Ford”.

Again, all the other sets were much smaller, and most did not evoke any particular

meaning of Ford very well. One that did was a set that contained the keywords
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supply,” “western,” “history,” and

“diesel,” “power,” “turboramair,” “turbo,” “strokes,
“american,” most of which are words that are heavily associated with a particular
kind of Ford diesel engine. This is an example of how some topics are hidden within

a query and can be identified with a method such as the one that we are discussing
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here.

6.3.11 Application of HAL-Set-Partition to “Lincoln”

As in the case of “jaguar” and “ford”, the HAL-Set-Partition algorithm did not work
particularly well. For n = 2, there was a single large set and many small sets. The
large set had 100 items (out of 268 possible) and the vast majority of them were
relevant to Abraham Lincoln, but there also were a few items about cars and other
miscellaneous items. Few of the other sets evoked any of the other meanings of Lincoln
well. For n = 3, there was again one large set and quite a few small sets. The large
set contained 272 of the 335 possible members, and was dominated by the Abraham
Lincoln meaning. Again, few of the other sets evoked any of the other meanings of

Lincoln well.

6.3.12 HAL-D:isjoint-Supervised: A User-Supervised Approach

to Creating Lists of Words for Use in Query Refinement

Another approach to separating these word lists into semantically-related groups is
the algorithm I call HAL-Disjoint-Supervised. This approach uses user supervision
to create disjoint sets. That is, after you find the top correlates for each of the
user-selected top words for each meaning (here, I selected, as I did above, “game,”
“cat,” and “type,” for each of the three meanings for “jaguar” respectively, although
any other three words that elicit the three meanings would work just as well), the
computer eliminates from each list of correlates any terms that are on the stop list

and any terms that appear on more than one list. See Figure 6.13 for a pseudocode
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Figure 6.13: Algorithm HAL-Disjoint-Supervised

1. Compute the dimension of HAL matrix with respect to a word w and a set of
Web pages on which that word appears (typically a set of Web pages that are
the result of a web query on w). That, the HAL matrix is computed from the
set of documents, and the dimension of the matrix relative to w is considered.

2. Have the user manually select a set of words from among the top j correlates
(where j is a tuning parameter) of w that reflect all the meanings of interest.
Call this set M.

3. For each of the words m in M, find its correlates. Call this set C(m).

4. For each of the words m in M, let D(m) be the set of words in C(m) that are
not correlates of any of the other words in M. The D(m) can then be passed
back to a search engine to refine the query.

description of this technique.

Figure 6.14 shows some hypothetical graphs that are output from HAL-Disjoint-
Supervised. In this figure, the circles represent words, and the black circles represent
user-selected words. The connections are present when a user-selected word w has
another word (represented by a white circle) that is among the top j correlates of w
but is not among the top j correlates of any other user-selected word.

HAL-Disjoint-Supervised does, in my opinion, an excellent job of separating out
the different meanings of the term jaguar, albeit at the cost of a little user supervision.
It leaves to the user what she does best; selecting terms related to each distinct
meaning, and it leaves to the machine what it does best; computing the HAL term
correlates and creating the disjoint sets. The only cost is that terms that might
legitimately be left in more than one set are eliminated, but of course this may

actually be a blessing, because if the terms are then passed back to the search engine
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Figure 6.14: Hypothetical Output of HAL-Disjoint-Supervised

to get a more focused set of pages, the terms that are on more than one list are likely

to cause trouble if they are included.

99

6.3.13 Application of HA L-D:isjoint-Supervised to the “Jaguar
Keywords

Acting as the supervising user, I selected “game,” “type,” and “cat” as the keywords
for use by HAL-Disjoint-Supervised, as words that I felt would pull out three distinct
meanings of “jaguar.”

The top ten words correlated with “game,” after applying HA L-Disjoint-Supervised,
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gear,” “interactive,” “times,” “

2«

are “boy, overlays,” “Hasbro,” “player,” “paused,” “pub-

”

lish,” and “headquarters.” The word “boy” appears, as noted above, because of the

fact that many of the game pages mention the “Game Boy,”

another video game.
“Game gear” is a kind of video game. “Times” appears because there is a publica-
tion called the “Atari Times.” “Overlays” appears because of overlays that are placed

on the keyboard to play different games. Hasbro appears because it acquired Atari.



232

“Headquarters” appears because people often title their pages “game headquarters”
or some such.
The top ten words correlated with “type”, after applying HA L-Disjoint-Supervised,

MW

are Nmk’” “XI], W

xke,” “dinky,” “xk,” “roadster,” “models,” “luxury,” “coupe,” and “daim-

ler”.

The abbreviations stand for different Jaguar automobile models. Most of the
other words’ automotive associations are obvious. “Daimler” was a car model associ-
ated with Jaguar. Dinky is a manufacturer of models of Jaguar cars.

The top ten words associated with “cat”, after applying HA L-Disjoint-Supervised,
are “endangered,” “coat,” “hat,” “leopards,” “big,” “horace,” “wild,” “species,” “bird,”
and “western.” Several of these words, such as “endangered” and “leopards,” have an
obvious association with the jaguar (cat). “Coat” appears because of the jaguar’s
coat; “big” appears because the jaguar is a big cat. “Hat” appears because there are
various pages about cats referring both to the “Cat in the Hat” (by Dr. Seuss) and
jaguars, among other pages that also have both words. It is not clear why “horace”
appears. “Western” appears because jaguars are native to the Western Hemisphere.
“Bird” appears because many of the pages that describe jaguars also describe various
other animals, such as birds.

Thus we can see that HA L-Disjoint-Supervised does an excellent job, at least with
this example and this supervision. It might make a good substrate for guided query
refinement, allowing users to use the facilities of the machine to identify related topics
and to better focus queries.

HAL-Disjoint-Supervised also considerably reduces the number of words that are

considered correlated with any central word. In the case of “game”, there were 1467

words correlated with it before the formation of the disjoint sets, and 973 (about
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Table 6.21: Reduction in Size of Keyword Sets for Various Meanings of “Jaguar” after
Making the Sets Disjoint

central keyword | non-disjoint size | disjoint size | percent of original size
game 1467 973 66%
type 903 525 58%
cat 356 169 47%

66%) of these were left after the intersecting words were thrown out. For “type,”
these numbers were 903, 525, and 58%; for “cat,” they were 356, 169, and 47%. See
Table 6.21 for a summary of these statistics. The relative magnitude of these terms
also gives one something of a sense of the relative prevalence of each of the meanings
in the underlying sample of Web pages, and to a lesser extent, to the universe of pages
containing “jaguar” that lies behind it.

HAL-Disjoint-Supervised also suggests an alternative method for the ranking of
pages relative to a particular topic. Once a particular disjoint set of keywords is
determined that describes that topic, then each candidate page is given a score which
is a weighted sum of which of these keywords appear on that page, with a higher
weight being given to those keywords that are better correlated with the central
keyword. The pages are then ranked according to their score. You would need to
correct for the length of the page, so that lengthy pages did not get higher scores.
This technique would have the advantage of being less brittle than conventional search
engines, which typically require that all the terms in the search query be in the result
pages (although some allow disjunctive queries as well).

Another way to rank pages that would be even less brittle would be to take account

of the conditional probabilities that individual keywords would appear in pages in a
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particular class, not requiring them to be assigned to one class or another (as is

required by an algorithm based on disjoint sets).

6.3.14 Application of HAL-D:isjoint-Supervised to the “Ford”

Keywords

I tested the HA L-Disjoint-Supervised algorithm for the Ford data set using the central
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keywords “motors,” “president,” and “Harrison.” (This last keyword refers to the actor

Harrison Ford.)

For the keyword “motors”, the top ten words after eliminating the intersection with

W

the other sets were: “racing,” “Firestone,” “affiliate,” “iframe,” “ferguson,” “models,”

7L Y bhAN13

“credits,” “replacement,” “Henry,” and “club.” For “company,” “racing,” “Firestone,”
“henry,” and “models,” the connection with the Ford Motor Company is obvious.
“Iframe” appears to have missed the stop list of HTML words. “Affiliate” appears
because automobile companies often affiliate with other automobile companies (Ford
has a relationship with Mazda). “Credits” may appear because of environmental
tax credits associated with certain “green” vehicles, and because of its singular form,
“credit,” since many pages are about getting credit to buy a vehicle. “Replacement”
appears because of the description of replacement parts on some pages. “Club” ap-
pears because of various clubs formed out of interest in Ford cars. So, as we see, most
of these terms are about the automotive meaning, and none are about the other two

meanings in question.

For the keyword “president”, the top ten words after eliminating the intersec-
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tion with the other sets were: “Nixon,” “presidential,” “Gerald,” “library,” “scouting,”,
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“rockefeller,” “houses,” “speeches,” “Omaha,” and “archives.” For most of these, the
connection with President Gerald Ford is clear. The words “library” and “archives”
appear because there are libraries and archives with information about President
Ford. “Scouting” appears because Ford had been an Eagle Scout. “Rockefeller” ap-
pears because Nelson Rockefeller was Ford’s vice-president. “Houses” appears because
President Ford spent most of his political career in the U.S. House (plural and sin-
gular versions of words only appear as a single token in the list). Omaha is Ford’s
birthplace.

Thus, HAL-Disjoint-Supervised does a good job on separating out keywords rele-
vant to Gerald Ford.

For the keyword “harrison”, the top ten words in the disjoint set are: “gallery,”
“imdb,” “pictured,” “filmography,” “tv,” “info,” “Ann,” “worshiped,” “dvd,” and “enter-
tainment.” For most of these, it is easy to see why these terms would be more likely
to appear on pages about Harrison Ford rather than the other 2 meanings considered
here. The word “info” appears to occur by random variation in the sample. “Ann”
may be a reference to Anne Heche, Ford’s co-star in one movie, or the middle name
of his biographer. “Imdb” is a reference to the Internet Movie Database, a popular
site that lists information about movies and movie stars.

So, HAL-Disjoint-Supervised does a moderately good job of pulling out words that
are relevant only to Harrison Ford in comparison to the other two meanings, although
these keywords would not be very specific to him if we were trying to distinguish him
from other movie stars.

Again, HAL-Disjoint-Supervised reduces the number of keywords associated with

each set substantially. For the keywords centered on “motors,” the number of cor-
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Table 6.22: Reduction in Size of Keyword Sets for Various Meanings of “Ford” after
Making them Disjoint

central keyword | non-disjoint size | disjoint size | percent of original size
motors 313 183 58%
president 645 435 67%
Harrison 514 319 62%

related keywords was reduced from 313 to 183, or about 58 percent of the original
value. For “president,” these numbers were 645, 435, and 67 percent. For “harrison,”

they were 514, 319, and 62 percent. These data are summarized in Table 6.22.

6.3.15 Application of HAL-Disjoint-Supervised to “Lincoln”

I tested the HAL-Disjoint-Supervised algorithm on the keywords “Abraham”, “Ne-

braska”, and “Cars”, as above. For the keyword “Abraham”, the top ten correlated
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keywords in the disjoint set are: “mary,” “assassin,” “attending,” “born,” “national,”
“school,” “todd,” “thomas,” “paper,” and “historical.” This is quite similar to the set
listed above for the non-disjoint set, indicating that for this meaning of “Lincoln” at
least, the sets were well-separated to begin with. It is easy to see how most of these
terms are related to Abraham Lincoln. “Mary,” “Todd,” and “Thomas” were names
of people in Lincoln’s family.

For the keyword “Nebraska”, the top ten keywords were: “acting,” “forecast,”
“southwest,” “iowa,” “local,” “game,” “interlinc,” “pm,” “cycle,” and “clear.” Many
of these are weather-related terms, since the search happened to bring up a lot of
pages about weather in and around Lincoln, Nebraska. “Acting” appears because

of a theater school at the University of Nebraska. “lowa” appears because Lincoln,
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Table 6.23: Reduction in Size of Keyword Sets for Various Meanings of “Lincoln”
after Making them Disjoint

central keyword | non-disjoint size | disjoint size | percent of original size
Abraham 946 734 78%
Nebraska 358 217 61%
cars 259 153 59%

Nebraska adjoins lowa.
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For the keyword “Cars”, the top ten keywords were: “club,” “cartier,” “mercury,”

“special,” “added,” “show,” «

continental,” “inventories,” “webring,” and “safety”. Apart
from “webring,” which appears because one of the Lincoln cars’ pages is linked into a
webring, the automotive meaning of most of these words is clear.

In this case, requiring that the sets be disjoint does not seem to add much to the
semantic separation, which is good even without the disjoint sets.

Again, the size of the lists of keywords was reduced as a result of the separation
into disjoint sets. For the keyword “Abraham,” there were 946 correlated keywords
in the non-disjoint set, and 734 in the disjoint one, about 78 percent of the original
size. For “Nebraska,” these numbers were 358, 217, and 61 percent. For “cars,” they
were 259, 153, and 59 percent. These data are summarized in Table 6.23.

Thus, we have seen that the use of a method based on semantic networks, user
supervision, and disjoint keyword sets drawn from these semantic networks, can be

effective in separating meanings from ambiguous web queries. The words found in

these sets can be used to refine the queries and get more precise results.
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6.4 Review of the Contributions of this Chapter

In the first section of this chapter, I showed that, given a set of Web pages that are the
result of a search engine, separating this set into connected subsets can be an effective
technique for semantic separation of unrelated topics. I discovered that simply doing,
this, however, is not enough; pages are often connected via highly-referenced pages.
Thus, a contribution of this section is the discovery that, by pruning out connections
to these pages, performance on semantic separation is improved.

In the second section of this chapter, I experimented with the use of semantic
neighborhoods in WordNet to identify different meanings in ambiguous search engine
results. The contribution of this section is the formulation of an effective algorithm to
do such separation, which was tested with two sets of results. This algorithm is based
on creating a vector representing the semantic neighborhood of each meaning of a
word, and then using the dot product with this vector to test each page for similarity
with that meaning; the meaning with the highest similarity is returned.

In the last section of this chapter, I experimented with using a HAL-based matrix
of correlations between keywords to identify sets of keywords that could be used
for query refinement. Such refinement could be used to remove ambiguity from
search engine results. The main contribution of this section is the finding that a
semi-automated method, whereby the user selects one keyword characteristic of each
meaning of interest, is best in identifying a set of Web pages corresponding to each
meaning. Some of the keywords in each set could then be passed to a search engine

as a refined query in order to obtain a less-ambiguous result.
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Chapter 7

Emerging Forms of Collaboration and

Filtering

7.1 Introduction

Up to this point, we have considered mechanisms for better organization of informa-
tion on the Web, using such information as manual page classifications into hierar-
chies, textual information on the pages themselves, and user ratings of Web pages.
However, we have not considered more explicitly collaborative systems, in which both
humans and information items (e.g. Web pages) are explictly represented as part of
the system. I review some of the systems that have already been built along these
lines in Section 7.2. In Section 7.3, I discuss a linear-relaxation-based system that I
have built that could potentially be used to organize communities consisting of infor-
mation items, their authors, and ratings of information items by people in the system

other than their authors. This system has the potential to democratically filter infor-
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mation items so as reduce the flood of information, and also makes document author

reputations (“karmas”) explicit.

7.2 Current Collaborative Systems

Since the construction of the GroupLens system for the collaborative filtering of
Usenet articles, a number of independent Web sites have popped up that feature
some combination of collaboration and filtering. Three of the best known of these
are the non-profit sites Advogato (www.advogato.org), Slashdot (www.slashdot.org),
and Kurobshin (www.kurobshin.org). Epinions (www.epinions.com) and Plastic

(www.plastic.com) are commercial sites sharing some of the characteristics of the
non-profit sites. My suspicion is that these systems emerged in part due to the dis-
satisfaction of many people with the low signal to noise ratio that had developed
within Usenet News after the Internet became widely popular; Usenet became inun-
dated with low-quality messages and commercial spam. Many of the developers of
the new conferencing systems also made their software available as open source.

It may be possible to move away from a centralized system of service delivery.
Singh et al. [114] discuss the theory of how individuals working in communities
can provide useful services to one another and validate trust. (Here, services are
anything from advice on what restaurant to choose to actual physical services, such as
plumbing or piano teaching.) There are many books that discuss how to build online
communities from a more practical perspective. Two such books are by Greenspun
[45] and by Kim [57].

Filtering of information from the Web can occur on both the individual and the
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group level. At the individual level, there has been a good deal of work on the
development of agents that can take feedback from users and customize information
delivery for each user’s needs. Some examples include the work of Shavlik et al. [112],
Goecks and Shavlik [40]| and Edwards et al. |33].

Terveen and Hill [119] report their experience with Phoaks (People Helping One
Another Know Stuff), a system that they developed which mines Usenet postings for
URLs and uses these as recommendations to the community of Phoaks users. They
define collaboration as occurring when sites cross-reference one another. They find
that the more commercialism there is, the less collaboration there is. In terms of the
Web graph, this means that in non-commercial communities, such as communities
of interest such as “Beat Poets,” the graph represents a relatively tightly connected
component. Alternately, in a commercial area such a “Italian travel” (where there are
many promotional sites) there are are a lot of sites that sit all off by themselves, and
are not connected to any others. Italian travel probably has both commercial and non-
commercial sites, and the non-commercial ones are more likely to link to one another.
Terveen and Hill find a relationship between highly connected sites and assessments
of site quality. This is an interesting situation; competition and commercialization
are supposed to lead to quality, but here is a situation where information sharing
seems to trump any advantage of competition.

All of these sites use ideas from collaborative filtering, the web of trust, or both.
The web of trust is a concept borrowed from public key cryptography [18]. Instead
of the trust relation being one of authenticating that someone is who they say they
are, however, it now becomes that you trust them in general, that is, you trust their

opinions, you trust them not to lead you astray. Obviously, this is a more fuzzy
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concept than the concept in cryptography—after all, someone is either who they say
they are, or they are not, but there are degrees to which you trust different people or
institutions. However, both imply a certain level of transitivity to the relation; if A
trusts B, and B trusts C, then A is more likely to trust C. However, the relation is
typically not reflexive; if A trusts B, B does not necessarily trust A. In fact, insofar as
societies are organized into hierarchies, often the trust relation is not reflexive, since
less knowledgeable people lower down in the hierarchy (e.g. students) will be less
trusted than those higher up in the hierarchy (e.g. teachers). However, the Internet
presents an opportunity for those who have accumulated knowledge by hook or by
crook to possibly trump those associated with more formal institutions. Zuboff [132]
has argued that this can happen within a wide variety of organizations.

Slashdot is probably the best-known collaborative filtering site among the tech-
nical community, especially among open source advocates. It has tweaked its design
over time. Gladwell [38] notes that small differences often make a huge difference
in the popularity (and thus, implied usefulness) of a design. One example he gives
is of the television show Sesame Street, which was not a success when it was first
introduced. The show’s producers found that kids stopped watching when people
were on the screen talking, but the kids resumed watching when the Muppets were
introduced into the group. Thus, small differences in the design of a collaborative
filtering system may make a big difference in its success.

Slashdot evolved its web of trust over time. Slashdot uses the concept of “modera-
tion points.” Individuals who use the system are granted a certain number of modera-
tion points periodically, based on such factors as how long they have been members of

the system and their “karma,” which is a measure of the number of moderation points
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their comments have been given by other users of the system. Moderation points are
handed out sparingly and can be used to boost or downgrade the ratings of articles
and comments written by others. Since moderation points are treated by the system
as a scarce resource, and have some status associated with their allocation, Slashdot
seems to have managed to reverse the usual attitude of users toward rating items in a
system. Generally speaking, the “dirty little secret” of collaborative filtering systems
is that the ratings matrix is quite sparse; people are not willing to spend a lot of time
rating other people’s postings, or other items that the system maintainers want to be
rated. Slashdot seems to have gotten around this by two mechanisms: by creating
a sense of community around membership in the system, and making the modera-
tion points a scarce commodity that are associated with one’s status (karma) in the
system.

The history of the evolution of Slashdot’s web of trust is interesting. They started
with a small, 25 member, group of trusted individuals who were the only ones given
any moderation points. The karma of all users in the system was initially based on
the allocation of moderation points by this core group. As the system grew, it became
clear that the original group of moderators could not keep pace with the number of
articles posted, so the moderation group was expanded to include 400 members who
had accumulated relatively high karma. Some of these people turned out to be bad
apples that needed to be banned by the core group, but for the most part, it worked
well. In the final stage, all users of the system were occasionally granted moderation
points, based on how long they had been members of the system, and their karma.
The system is so large now that it is difficult to attack the group with high karma;

one would need an organized conspiracy of a large number of malicious users to do
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so. Some users have tried to set up a large number of bogus accounts to attack the
system, but this has been detected because it was done in a unintelligent manner.

Slashdot still relies on a core group of editors (those associated with the group
that started the system) to select the main topics for discussion, so it is still somewhat
elitist in that sense. Any one can propose a topic for discussion, though. Kuro5hin,
which is a system which is also quite popular, has some differences from Slashdot.
Instead of having a panel of editors select the articles, users submit articles to a
moderation queue under one of several topics. Other users moderate articles in these
queues, as the top-rated articles emerge from the queue to appear in the appropriate
category of the site. Also, Kurobhin has a broader charter than Slashdot. Slashdot
is devoted almost exclusively to technology, while Kuro5hin discusses technology,
culture, politics, and other topics.

Kurubhin uses the concept of “mojo” instead of “karma.” The karma of a Slashdot
user is the sum of the moderation points that other users have given to her postings.
In Kuro5hin, mojo is a time-decaying average of the mean ratings of a user’s postings.
Thus mojo measures “what have you done for me lately?” as opposed to karma, which
is more cumulative.

All of these systems consist primarily of posted information, individuals, and
various relations between and properties of these. One can generalize this to the
following: all postings, computer files (such as word processing documents, Acrobat
files, mp3 files, etc.), or Web pages (chunks of information) can be generally be
thought of as information items, members of a set called I. People can be thought
of as members of the set of all people P, and institutions or groups of people, are

members of the power set of P, which we can call G. Individuals, people, and groups
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are simply subscripted members of each of these sets.

Then there are several important relations that exist between these entities. One
important relationship is authorship, which is typically made explicit within systems
like Slashdot, Kurobhin and Usenet (since users are authors of messages on these
systems, and what is being accessed is the quality of these messages) but is usually
not made explicit (at least not at a level that can easily be understood by the machine)
with Web pages, even though it is always the case that a Web page is authored by
an individual or group. Another important relationship is readership, which is also
not explicitly made explicit by the Web, because even if the Web browser software
knows the name of the user using it, it typically does not disclose this information
to the Web server (which typically only logs the browser type, page retrieved, time
stamp, and IP address of users downloading pages) for privacy reasons. Optionally
associated with each readership relation can be an evaluation (rating), in which an
individual associates a rating with an information item. This is done in a system such
as Slashdot, but not typically done on the Web in general.

Another relation that can exist is a direct trust relationship between individuals,
such as exists between friends or colleagues. There can also be a referral relation
where individual A refers information item X to individual B. There can be various
relations between information items themselves; for instance, one information item
could be a part (subset) of another, or one can link (via http) to another, or one can
be a response to a another in a threaded discussion. Finally, an information item can
be typed, that is, it can be placed in a set, or in a hierarchy, in the manner that Yahoo!
or Dmoz’s editors do. Most information on the Web has not been typed, as many

people, such as Pirolli et al. [90] have pointed out, and it is a losing battle to keep up
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using a relatively small group of people (that is, small relative to the number of Web
pages). There is no reason to leave this to elites; the process of classification can be
left to the end user, as is the process of evaluation, with the appropriate weighting by
trust. Essentially, Dmoz and Yahoo! use self-selected gate-keepers to establish trust;
this can be established in a more decentralized manner, as Kurobhin has shown. XML
[12] may provide a capacity for the authors of pages to classify them, but I doubt all
authors will do so. XML represents a technical mechanism that can implement any
bureaucratic mechanism, but the Web is lacking in uniform bureaucratic mechanisms,
except that that is implicit through browser design.

In the next generation of the Web, there may be an attempt to deal, at least, with
the problem of authorship. Authorship may be established through a combination of
improved user authentication, and XML Web pages that explicitly contain a field for
an individual or organizational author. Readership and evaluation is more difficult to
solve, because people are less willing to give up their privacy, even if they gain some-
thing by participating in collaborative filtering. Here, though, systems like Slashdot
have shown the way, and can be extended to the entire Web, if the social barriers
to doing so can be overcome. The increasing popularity of directory management
tools such as LDAP (Lightweight Directory Access Protocol [52]) allow many of the
entities, such as organizations, people, computers, files, and Web pages/resources to
be listed in directories and relations between these also be listed. This may facilitate
the transition. While LDAP was devised to serve a directory of users, groups, and
resources, authenticate users, and control user access to resources, the specification is
quite general and could be adapted to the sorts of purposes I am discussing here. For

instance, each (authenticated) individual could have an LDAP record with pointers
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to all of the Web pages she is the author of. Users could surf the Web one of two ways,
anonymously, or authenticated. If they surf anonymously, ratings of a particular Web
page are only accepted once from each network address (IP).

I argue that much of what has been written about search engines, collaborative
filtering, digital libraries, distance education, and trust in communication networks
can actually be generalized in terms of the framework and relations given above. In
fact, any situation in which people are communicating and working together with
information— which is most human situations today— can be improved via collabora-
tive filtering using an authorship-readership-rating system, which is a simple extension

of the Web as it exists today.

7.3 A Model Collaborative System

I have built a simple model that embodies some of the relations given above, and it
is described in this section. The purpose of constructing it is to show the feasability
of a collaborative system that supplements the existing Web with ratings of Web
pages and of their authors. Such a system would be a useful addition to the existing
methods of filtering pages on the Web through Web directories and search engines.
A system based on this model could be used for a collaborative filtering system like
Slashdot, or it could be a applied to the Web as a whole, if the authorship of pages
could be determined in a standard manner.

For a set of people S rating information item &k authored by person p, where p
has authored a set of information items A, (including k), and where the rating made

by individual ¢ of information item £ is r;;, and the overall rating of each article is
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Figure 7.1: An Algorithm for a System of User and Document Ratings

1. Collect all the user ratings r; of all the documents & in the system where ; is
the user rating document k.

2. Set the initial overall rating of each document k, ratings, using Formula 7.1.

3. For each user p in the system, set karma,using Formula 7.2, based on all of the
documents she has authored.

ratingy, and the karma of each individual p is karma,, let

k i
rating, = Lpes (karmapriy) (7.1)
> pes karma,
and let
ratin
karma, = ke, 9t) (7.2)
| Ap|

Note that these formulas depend on each other. We can also, without loss of
generality, assume that all values are positive (users can represent low karma and
ratings with low positive values rather than negative values). The r; are given by
the users. If we allow the users to start out with everyone having equal karma, before
the first iteration of formulas 7.1 and 7.2, then after one iteration an initial value of
the overall rating of each information item and of each individual’s karma has been
set. This technique is given in pseudocode in Figure 7.1.

Graphically, such a system could be visualized as a directed graph or network
consisting of two types of nodes, representing individuals and documents, and two
types of directed links (e.g. the two-individual, six-document system shown in Figure

7.3 below). One type of link represents the authorship relation, and points from
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a document to its author. The other type of link represents the act of rating a
document, and points from an individual to a document. This latter link is labeled
with the numeric value of the rating. Thus this network is somewhat more complex
than the current Web, although not as complex as proposals such as the semantic
Web [10] (in which semantic information is attached to every Web page), into which
such a network could be embedded.

After one iteration of Equations 7.1 and 7.2, we could stop; but we have only cap-
tured first-order effects. We have not allowed information to propagate in the network
more than one step. After one step, we have done what many search engines other
than Google do; they count the in-links coming into a page. (This has been slightly
modified, since it is a weighted count, based on the ratings.) Google’s designers make
a good argument that second, third, and nth-order information is needed in the sim-
ple in-link count context; the context described above is only slightly more complex,
because it is still linear—instead of a simple sum of in-links, it is a weighted sum
of ratings. But the need still exists to propagate data forward through the network
more than one step, and an iterative algorithm, similar to that made by Google, can
do this.

One way to make the information propagate in the system would be by using
a pair of linear recurrence relations, iterated until they converge (given below in
Formulas 7.3 and 7.4). In these relations, the rating of a document is a function of
all of the ratings of people that are rating it, weighted by those individuals’ karmas
(and normalized). The karma of an individual is then the mean of the ratings that
that person authored. Initially, the document ratings are unweighted, and all the

individuals have equal karma. Then, the document ratings are re-computed based
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on the weighted karma of the rating individuals, and then the authors’ karma is
re-computed, iteratively. Unrated documents are set to an average karma on all
iterations (in my experiments, five on a scale from one to ten). Since the system
is linear and the equations are normalized, it can be expected to converge, and the
result is a relaxation-type algorithm akin to some algorithms used in computer vision?,
unlike non-linear systems which may exhibit chaotic behavior [39].

Formulas 7.1 and 7.2 are used to initialize the system. The two formulas are now
modified so that the document ratings are weighted and the subscripts are expanded

to reflect the iterations, thus transforming the formulas into two linear recurrence

relations:
. Ypes(karmapnrix)
t mal) = 7.3
FAGk ) > pes karmapy, (73)
Ykea, (Tatingn)
karmapimir) = ke A (7.4)
P

A pseudocode version of this algorithm is given in Figure 7.2.

I did a simple experiment with a three-person system to illustrate the effects of
democracy in such a system. In this system, there were three people, each was the
author of two documents (for a total of six), and each rated all four documents that
she was not the author of. Person 1 rated all four documents written by the other
two people with a rating of 1 on a scale from 1 to 10. Persons 2 and 3 both rated
both of the documents that person 1 wrote with a rating of 1. Person 2 and 3 rated

each other’s documents with a rating of 10. Thus persons 2 and 3 represent a “mutual

LOf course, linear recurrence relations need not converge; for example, the equation z;1; = 2z;
diverges to infinity. But since these equations are normalized, they do not diverge, and because they
are linear, they are not chaotic. It would not be a good idea to use a nonlinear recurrence relation
for constructing a relaxation-based collaboration system, unless you could prove that its behavior
would not be chaotic.
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Figure 7.2: Relaxation Algorithm for a System of User and Document Ratings

1. Collect all the user ratings r; of all the documents & in the system where ; is
the user rating document k.

2. Set the initial overall rating of each document &, ratings, using Formula 7.1.

3. For each user p in the system, set karma,using Formula 7.2, based on all of the
documents she has authored.

4. Repeat, with iteration counter m, until convergence (that is, until values of
karmay, and ratingg, do not change more than a small constant €). Use
Formulas 7.3 and 7.4 to update these values.

admiration society.” Person 1 thinks poorly of their documents, and they think poorly
of his. This system is illustrated graphically in Figure 7.3.

Initially, person 1 has a karma of 1, and persons 2 and 3 each have a karma of
5.5. This is because all of the ratings of person 1’s documents are 1, and thus each
of his documents has an initial rating of 1 according to Equation 7.1 (prior karmas
are all equal), and his karma is just the average of his document’s ratings, according
to Equation 7.2, and therefore is also 1. Each of the four documents authored by
person 1 and person 2 has one rating of 1 and one of 10, so its initial rating is
((1 +10)/2) = 5.5 according to Equation 7.1. Persons 2 and 3 have a karma of the
average of their documents’ ratings according to Equation 7.1, and therefore have
initial karmas of 5.5.

Consider the next iteration. Person 1’s document ratings of 1 remain the same,
because they are all equal (1). Person 1’s karma also remains 1. However, according
to Equations 7.3 and 7.4, person 2’s karma now becomes ((((5.5*%10) + (1x1))/(5.5+
1))+ (((5.-5%10) + (1 1)) /(5.5 4+ 1)))/2) = 8.62. Person 3’s karma is the same as
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Figure 7.3: A Model System Consisting of 3 People and 6 Documents, 2 Documents
Per Person

People:: Black Circles Person 1 Au’rhorship: Sold L.ines
Documents: White Circles Ratings: Dotfted Lines

Person 2 Person 3



253

person 2’s by symmetry.

At iteration 2: Person 1’s document ratings and karma are still one. Person 2
and 3 now have a karma of ((((8.62* 10) + (1%1))/(8.62+ 1)) + (((8.62 % 10) + (1 *
1))/(8.62+1)))/2) = 9.06.

After 5 iterations, person 1 still has a karma of 1, and the karma of persons 2 and
3 has risen to 9.1, where it has stabilized asymptotically. Each document written by
each person now has a rating equal to the karma of its author (this is not generally
true, but is true in this case because of the symmetric nature of the graph). Thus, the
effect of the relaxation is to allow persons 2 and 3 to outvote person 1 and have their
views dominate the system. If you want a collaborative system to democratically
reflect the views of its users, you would want an outcome along these lines.

Next, consider a system with 4 users and 8 documents consisting of two mutual
admiration societies of 2 users each, where each user rates the two documents authored
by the other member of her society with a 10, and the 4 documents authored by the
members of the other society with values of 1. In this system, all karmas and document
ratings are set, after the first iteration, to 4, and do not change with further iterations.
Thus, there is a standoff.

For my third experiment, I simulated a system in which the distribution of ratings
and connections between users and document was random. In this system, document
ratings ranged from 1 to 10 and were uniformly distributed across this range (using
the computer’s standard pseudo-random number generator). There were three pa-
rameters in this system: the number of individuals, the maximum number of ratings
per individual, and the maximum number of documents authored by a given indi-

vidual. The latter two parameters are allowed to range randomly from zero to the
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maximum for each individual, and the actual documents that they rate are also chosen
at random. All of these random numbers are again drawn from an even distribution.

I selected a system with 5 individuals, numbered 1 to 5, up to 5 documents au-
thored per individual, and up to 10 documents rated per individual (individuals did
not rate documents of which they they were the author). This resulted in 13 docu-
ments, numbered one to 13 (thus each individual authored on average 2.6 documents),
with a total of 29 ratings made in total, or an average of 2.2 ratings per document.
Table 7.1 shows the documents and their authors. Table 7.2 shows all the ratings,
giving for each one the document rated, individual doing the rating, and the rating

value.

Table 7.1: Documents and Authors for the 5-Individual Simulation

document
author |1 (2|3 |4 |5|6|7|8|9|10 |11 |12 |13
1 X
2 X | X
3 X|x|x|x
4 X | x| x| x
) X | X

Table 7.3 shows the mean individual karma after 1, 5 and 10 iterations of the
recurrence. Table 7.4 shows the mean document rating after 1, 5, and 10 iterations.
Convergence is rapid; to two decimal places, by the 5th iteration for both the karma
and the ratings. Documents 4, 6, 8 and 12 have only one rating each, so their ratings
do not change over time.

Thus, we have seen that it is feasible to build a collaborative system in which both

documents and their authors are evaluated.
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Table 7.2: Rating Individuals, Documents Rated, and Rating Value for the 5-

Individual Simulation

document
rater | 1 314 (516|789 10111213
1 1 10 10
2 9 10 319 7 2|6
3 4 6 4 9 2
4 4 51101 9 4
5 1 2 515 6 | 5|1

Table 7.3: Mean Individual Karma of the 5-Individual System after 1, 5 and 10

Iterations

Iteration

User

5

10

4.50

4.45

4.45

3.42

3.39

3.39

6.19

6.32

6.32

7.08

7.31

7.31

G | W DN

3.00

2.70

2.70
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Table 7.4: Mean Document Rating for the 5-Individual system after 1, 5, and 10

Iterations
Iteration

Doc 1 5 10
1 4.50 | 445 | 4.45
2 2.50 | 1.90 | 1.90
3 4.33 | 4.89 | 4.89
4 | 10.00 | 10.00 | 10.00
5 6.25 | 6.59 | 6.59
6 5.00 | 5.00 | 5.00
7 3.50 | 3.68 | 3.68
8 9.00 | 9.00 | 9.00
9 6.67 | 6.38 | 6.38
10 | 6.00 | 6.11 | 6.11
11 | 6.67 | 7.73 | 7.73
12 | 2.00 | 2.00 | 2.00
13 | 4.00 | 3.40 | 3.40

Next-generation collaborative systems will likely be embedded in virtual environ-

ments in which each individual is represented by a three-dimensional constructed “per-

sonality” commonly called an avatar. Collaboration environments like this mix the

concepts from collaborative filtering with an attempt to build a completely simulated

society. If you think about it, a multi-player game where each avatar is controlled by

an individual amounts to such a society [61]. Because computer graphics is currently

more advanced than re-constructive computer vision, we are likely to see such sim-

ulations with avatars before we see systems with virtual environments that actually

reflect the real images of people; however, there is quite significant work along the

latter lines; see for example, Lanier’s work on what he now calls “tele-immersion” [64].
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7.4 Review of the Contributions of this Chapter

The main contribution of this chapter is the construction of a relaxation-based system
which demonstrates how a decentralized collaborative, democratic system for the
filtering of Web documents would work. I show that such a system is feasible, at least
for a small, simulated test bed. It extends the current paradigm of the Web with
explicit authorship and evaluation (rating) relations, making the Web graph more
rich and more informative. Together with other systems of filtering, such as those
used by the various search engines and directories, as well as content-based filtering,
such an enriched system could filter the Web more effectively. However, such a system
would require a high level of participation by its members. In addition, the collection
of large numbers of ratings would make the construction of taste groups, in the same
manner as GroupLens and MovieLens, a simple matter, by correlating preference
vectors and clustering groups of individuals with similar preference vectors.

This system has some similarities to Google, in that they both use a relaxation-
based iterative algorithm. However, it differs in that both document authors and
documents themselves are made explicit entities in the system; thus the reputations
(“karmas”) of document authors are also explicit. Ratings are also made explicit,
unlike Google, which just uses the Web’s linkage graph. As we have seen, this would
make the construction of taste groups readily possible as well. Thus a system like
this allows for a potentially richer representation of the underlying ontology of the
real world of documents, authors, and evaluators than does a system based on link

information alone.
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Chapter 8

Conclusion: Break out of the Box

8.1 Thesis Summary, Results, and Contributions

Much of this thesis has been a study in the feasibility of combining hyper-link, textual,
manual classification, and collaborative user feedback information in order to build
better interfaces to the Web, and thereby facilitate the further development of user
communities.

In Chapter 3, I examined the extent to which link information can be combined
with information of the category of the page that the link is pointing from to determine
the category of a destination page. The first contribution of this chapter was the
following: by looking at the confusion matrix, I showed that simple counting of direct
or indirect (two-hop) links into or out of a page predicts that page’s category with a
probability usually higher than chance and in many cases considerably so. I showed
that this was the case for both a set of Wisconsin policy pages that I had manually

classified and a set of Dmoz pages that had been classified by others.
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Also in Chapter 3, I examined a set of variants to the Naive Bayes algorithm, some
of which were modified so as to use link information. All of these were tested on data
drawn from two parts of the Dmoz hierarchy (two training sets and two corresponding
test sets). This led to the second main contribution of this chapter: I found that an
algorithm that allowed category information garnered from link information to super-
sede the result of the Naive Bayes algorithm, except when there was no relevant link
information (in which Naive Bayes’s result was used) performed statistically better
than all the other variants on the two test sets. This result has significant practical
results for the Web, in which the number of manually-classified pages continues to
increase and this pages are much more likely to be hub or authority pages.

In Chapter 4, I experimented with techniques for merging search engines with
directories. Here, I argued that rankings within any vertical portal within a directory
need to be specific to that portal, and the union of a very large space of such portals
contains the same pages that a search engine does, although organized differently.
I argued that the ranking of pages within such a vertical portal needs to look at
linkages within that portal as well as the goodness-of-fit (quality of set membership) of
individual pages within that portal. This goodness-of-fit is a measure of the relevance
of the page to the portal’s topic. The pages that should be ranked the highest within
a portal should be highly relevant pages that are pointed to by a lot of other highly
relevant pages within the portal.

The main contribution here is conceptual: that is, pointing out the difference
between contextualized and global ranking schemes, and noting that a global rank
and a contextualized rank are unlikely to be the same, because there are likely to

be pages with high global rank which are only slightly relevant to a particular topic.
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Figure 8.1: Hypothetical Optimal Rankings of a Set of Ten Web Pages with Respect
to Two Topics

Topic 1 Topic 2
1. Page A 1. Page G
2. Page B 2. Page ]
3. Page C 3. Page |
4. Page D 4. Page F
5. Page E 5. Page E
6. Page F 6. Page D
7. Page G 7. Page A
8. Page H 8. Page H
9. Page 1 9. Page C
10. Page J 10. Page B

In this case, a page that is highly on-topic, but with a lower global rank, should be
ranked higher in a contextualized ranking.

Figure 8.1 illustrates this idea. Here, ten pages are ranked with respect to each
of two topics, according to a hypothetical optimal ranking. Being highly ranked with
respect to one topic does not mean that a page is highly ranked with respect to the
other. For instance, page A is ranked first under topic 1, but seventh under topic 2.

In Chapter 4, to illustrate these concepts, I built a sample system (Active Portal)
for collecting pages within particular topics by spidering off of an existing classifi-
cation. This system was evaluated with respect to a few other directories and with
respect to Google, and appeared to hold up well, retrieving more sites than the direc-

tories (with, however, less precision) and having higher precision than Google with
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respect to simple queries (with, however, less recall). However, more work needs to
be done to improve the precision of this system, and to adapt its ranking system so
that it can predict the ranks of actual users. This would involve the collection of a
large amount of human subject data. (Recall is of little concern in the Web context,
because people usually have more information than they can handle; it is only rel-
evant in the sense that one wants to be sure not to miss the most important, most
salient sites).

Also in Chapter 4, I experimented to see to what extent a multi-resolution version
of Naive Bayes can be used in conjunction with spidering in order to classify pages.
Again, I used pages from Dmoz as a test bed for this. Looking at pages spidered
off of existing pre-classified pages by following links off of those pages, I found levels
of classification performance that are considerably higher than one would expect by
chance, even though these spidered pages do not necessarily fall into the same category
as the page that points to each of them.

Because the performance is quite high at the top level (lowest level of resolution),
I found that pages tend not to be categorized not far from the category of the page
pointing to them (i.e., in a sister category). Thus this shows that this is a feasible
strategy for classifying pages in a tree-like structure, and is a contribution of this
chapter. Thus, using a multi-resolution Naive Bayes algorithm to feed pages into
vertical portals for consumption and filtering by communities also seems feasible. It
would be interesting to implement one or more portals and collect feedback to see to
what extent the pages being fed into the portal meet the approval of the community
members.

Also in Chapter 4, I experimented with the idea of using the most prominent
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keywords from the centroid of a set of pre-classified pages to gather new pages using
a meta-search. With the two categories that I used in this experiment, I found that
this worked quite well. T also found that these pages classified very accurately back
into their intended category using Naive Bayes, but this was not that surprising,
given the fact that Naive Bayes itself responds the most to the highest-probability
keywords. I also, in this same section, explore the differences between using a TFIDF
and what I call a TFIGF (term-frequency-inverse-global-frequency) in generating the
centroids, and find that a combination of these two approaches appears to work best,
at least for these data. The idea, and discovered feasability, of using the keyword
centroids to find more pages on a focussed topic is the contribution of this part of the
chapter.

In Chapter 5, I explored relevance and quality judgments given by Web users.
I argued that the mean relevance and quality of a Web page, as rated by a group
of users, is a more meaningful metric of what users think of a page, because it is a
direct measure, rather than indirect measures such as schemes to count in-links, even
sophisticated recursive schemes such as Google’s. I measured the quality and relevance
to a category of 500 Web pages, 100 each classified into each of five categories.

I found that the keywords on the pages alone failed to predict my quality and
relevance measures with any probability exceeding that that would occur by chance, at
least for the models that I tested. I also found that the logarithms of the search engine
counts of in-links, as given by two different search engines, weakly but significantly
predicted these quality and relevance judgments, accounting for between 10 and 20

percent of the variation in these measures. These negative and positive results are
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contributions of this chapter.!

Chapter 5 showed that a simple count of in-links does a poor job of capturing
people’s views of what high quality and relevant pages are. It appears that social
factors (like how well-known the institution that created the page is) and how well-
designed the page is may play a large role. In any case, this chapter points up the
need for direct measurement of human preferences, such as in collaborative filtering
systems, as opposed to information that is automatically collected.?

In Chapter 6, I explored some techniques for clustering Web pages. (There were
also a couple of instances of classification undertaken in this chapter, as mentioned
below.) First, I looked at the idea of using connected components of pages on the
Web to identify pages that are semantically related. This ran up against a problem;
sometimes semantically unrelated pages are connected. It turns out that such pages
tend to be connected through pages that are very heavily referenced on the Web, such
as the Yahoo! home page. It turns out that if you prune such pages out of the graph,
this removes the problem, at least for the pages with which I experimented. This was
the first contribution of this chapter.

I used this technique to semantically separate pages that result from three am-
biguous queries to search engines, and found that it gave good separation. I looked at
the two new search engines Teoma and Wisenut, seeing how they did on this semantic
separation task, and found that their performance was mixed, doing better on some

tasks than others. Overall, I would access their performance as fair. I suggest a tech-

'T was unable to get the Google scores, since Google does not give these out directly, in numerical
form, but just uses them to rank pages presented to the public; it is possible that the Google scores
would predict the quality and relevance scores more accurately.

2However, it may be the case that Nielsen-style usage statistics and measures of time spent on a
page, and scrolling within it, can be useful proxies.
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nique, not yet implemented or tested, for modifying the similarity function between
pages to take account of both links between pages and textual similarity.

Also in Chapter 6, I looked at the extent to which WordNet could be used for
semantic disambiguation. For two different ambiguous queries, I tested whether the
cosine of the WordNet semantic neighborhood, as I defined it in that chapter, of each
query and a page in question could successfully determine the meaning of that page,
and I found that this worked reasonably well, when you look at the confusion matrices
in question. Of course, this only worked when WordNet had the meanings in question
in its database. Since WordNet is fixed in structure, and we are matching against it,
this was, strictly speaking, classification, not clustering. The demonstration of the
feasibility of using WordNet for semantic disambiguation in the manner I suggest was
the second contribution of this chapter.

In the final section of Chapter 6, I looked at the performance of HAL-derived se-
mantic networks in clustering sets of Web pages. 1 considered two methods for using
such networks for disambiguating the results of ambiguous Web queries, which I call
HAL-Set-Partition and HAL-Disjoint-Supervised. The former is totally automated,
and the second requires some user input. HAL-Set-Partition considers the top cor-
relates of the query word (ignoring stop words), computes their correlates, and then
connects all words correlated in some way to as to form sets of words. HAL-Disjoint-
Supervised has the user select salient meanings within the top correlates to the query
word, and then forms sets around each of these, eliminating words that appear on
more than one list. The second method works better, which is not surprising since
it uses user supervision. However, it would be easy to build a system that asks for

this supervision. The presentation of the semantic network of words around a query
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word would be interesting information for many people doing a query, and would be
useful for query refinement. HAL-Disjoint-Supervised is a supervised algorithm, so
it is a classification rather than a clustering technique. The development of these
two techniques, especially the more effective HAL-Disjoint-Supervised, is the third
contribution of this chapter.

In Chapter 7, I discussed a number of emerging systems for collaboration among
users. As I will argue in the remainder of this conclusion, I believe such collaboration
will be central to successful systems on the Web in the future; the best systems will
combine techniques of collaborative filtering and automatic filtering, playing to the
strengths of man and machine. The machine is best at processing large amounts of
information and at doing a “first cut” at filtering that information; once this first cut
has been done, then collaboration and individual editorial work is best at filtering it
for final consumption.

Chapter 7 first discussed a number of systems that have been developed in order to
overcome the signal-to-noise problems of earlier systems such as Usenet News. Usenet
News initially benefitted from the self-selection of more adept users in the earlier years
of the Internet (that is, when the Internet was still mainly used by a small elite in
universities and other elite institutions). Later, it became flooded with spammers and
low-quality messages from uninformed users. As a result, people developed a type of
system that allowed people to develop reputations in the system, and to moderate
the system. People were rated on the quality of their comments, and this became the
basis of their reputations.

I argued in Chapter 7 that document ratings and user reputations that are based

on these document ratings are an important piece of meta-data that should be in-
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serted, if possible, in the next generation of the Web. The authorship relation between
a person (or institution) and a document is also an important piece of meta-data.
(These are among many such semantic relations that should be recorded in meta-
data.) I built a model of a iterative linear system in which users rate documents
that they are not the author of, and develop reputations based on the ratings of
the document. Their ratings are then weighted by their reputations, and the system
relaxes through iterations to stable values for the user reputations and overall docu-
ment ratings. I ran several variants of this model and show that they all converge.
The purpose of this exercise was to design a system that could be implemented as
a component of an overall system for document filtering and collaboration, a system
that also made use of multi-resolution automatic classification and of clustering. The
“proof-of-concept” provided by showing the feasability of this relaxation-based system
for embodying user ratings and user document ratings was the main contribution of

this chapter.

8.2 Directions for Further Research

At various points in this thesis, I have suggested possibilities for further research. I
review these possibilities briefly in what follows here, as well as some ideas that were
not already mentioned.

My work in Chapter 3 on the automatic classification of Web pages suggests the
design of a system that feeds newly-discovered Web pages to users for feedback and
classification, allowing training sets to expand in a semi-automated fashion. The sys-

tem could use the most successful algorithm in Chapter 3 (Voting-Trumps-NB) to
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make a provisional classification of a new Web pages. It could feed Web pages to
users for classification in a priority order based on the number of links from pages al-
ready known to be a particular category. Users could confirm or reject the machine’s
classification, allowing the training set to expand with a reduced cognitive load on
the community of users. As the training set enlarges, the machine’s classification
performance would presumably get more accurate. Such a system could also func-
tion as a semi-automated tool for the construction of taxonomies such as those now
constructed manually by Yahoo! and Dmoz.

In addition, additional work could be done on the design of algorithms that use link
information in addition to textual information in classifying Web pages. I found that
Voting-Trumps-NB performed significantly better than Naive Bayes on the testbeds
that 1 was using, but it needs to be tested on additional testbeds. In addition, it
needs to be compared with non-Naive-Bayes-based algorithms, some of which are
known to perform better on the text classification task than Naive Bayes (see Section
2.10 for a discussion of this). Given that the addition of the link information to Naive
Bayes in one form is improving its performance, presumably the performance of these
other, better-performing algorithms could also be improved. However, this needs to
be validated experimentally, and ways need to be devised to incorporate the use of
the link information in these algorithms.

Other algorithms could be devised that also make use of the anchor text that
appears in Web page links; this often contains a useful summarization of the text of
the page that it points to. This anchor text has been used by Blum and Mitchell in
their work on “co-training” [11].

An important point made in this thesis that the rankings of pages with respect to
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a Web query, or with respect to a particular topic, need to be specific to a particular
topic. For instance, a page that should be ranked highly with respect to one topic,
because it contains a large quantity of high-quality information about that topic,
should be well down the list with respect to another topic, if it only touches on this
latter topic. The search engines, as far as I know, have not collected much human
subject data in an attempt to make their rankings fit the rank preferences of human
subjects. If such subject data is collected, it would be possible to compare different
ranking schemes. This seems like an important area of research if search engines are
to continue to be improved. Chapter 5 found that subjects’ quality and relevance
judgments were not very strongly related to search engine rankings as they presently
stand, so this is indicates that there is substantial room for improvement in this area.
The AI challenge here is substantial, to build systems that can recognize high-quality
information (as judged by humans).This is presumably related to text comprehension,
which is known to be a difficult problem.

Specifically, T suggest in Chapter 3 that ranking schemes can be improved by
taking into account topical information. A page with in-links from pages that are
already known to be on the topic in question should be ranked higher than those
without such inlinks, all else being equal. However, I have not fully validated this
idea with data; collection of subject feedback data on particular rankings with respect
to particular topics could do so. Additional work needs to be done to better fit these
subject ratings, so that they can be better predicted. In addition, work needs to be
done to model the entire search process, from query formation to the presentation
of results, and then collecting feedback on the quality of the overall results. This is

related to work on how to build systems that help users automatically improve their
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queries.

The sections of Chapter 4 on multi-resolution Naive Bayes classification and on
using the centroid of set of Web pages on a particular topic to generate keywords
to pass to search engines to find additional pages on this topic can be combined to
devise a system for automatically classifying Web pages. New pages are fed into the
system via spidering and via the output of these search engines and then classified
using multi-resolution Naive Bayes.

Further work could also be done on identifying keywords that work well in defining
topics. 1 have begun this work with my work on the computation of the TFIDF
centroid and what I call the TFIGF centroid, and the combined version of this, but
you could imagine a more extensive algorithm that inductively (based on a training
set of classified pages) builds a query string that uses phrases, conjunctions, and
disjunctions to more accurately pull out pages on a particular topic. Words from
the TFIDF or TFIGF centroids could be used to seed these potential query strings,
and alternative query strings could be tested against one another in terms of their
precision and recall in discovering members of the training set. One could also look
for the most-frequently-occurring two-word or longer strings in the positive training
examples.

In order to do this, techniques that combine machine learning and logical repre-
sentations of query strings could be used, such as inductive logic programming [79].
The output of these queries could be fed back into the system for user feedback,
allowing for continuous improvement of a system that identifies pages on particular
topics; the query strings could be continuously relearned.

The technique in Chapter 6 that clusters Web pages using connected components
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works fairly well, using link information alone, but it could be enhanced by using
it in combination with a standard text-based clustering algorithm. The connected
components could be used to create the initial clusters, but text-based methods could
be used to combine clusters if they were sufficiently similar. Alternately, the document
similarity function itself could be altered to take both link and textual information
into account. These ideas have been discussed in more detail in Section 6.1.7.

In Chapter 6, I applied WordNet to the problem of semantic disambiguation of
Web pages referrring to different meanings of the same word. WordNet is a wonderful
tool, and researchers have only scratched the surface of its applicability to problems
involving text management on the Web. For instance, it could also be applied to
query refinement, after it has made an initial stab at disambiguation of the results of
a Web query. Pages could be separated into several topics corresponding to different
meanings of a search term in WordNet, and then additional words associated with
each meaning could be suggested in order to construct one refined query for each of
the possible meanings of the initial one-word query.

HAL-based semantic networks were also used for clustering in Chapter 6. The two
algorithms developed in that chapter along these lines, HAL-Set-Partition and HAL-
Disjoint-Supervised, both had certain flaws: namely, HA L-Set-Partition did not work
that well, and HAL-Disjoint-Supervised requires user supervision. Further work could
be done to develop an algorithm for clustering based on such semantic networks that
works better than HAL-Set-Partition without having to resort to user supervision. If
a method could be arrived at for automatically identifying the central keywords that
are provided by the user in HAL-Disjoint-Supervised, then this algorithm would no

longer require supervision. However, identifying these central words may be a very
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difficult task, in the absence of outside information.

The system for collaborative filtering that I described in Section 7.3 needs to be
tested on real-world data. Ideally, a situation could be set up where people would
get some sort of reward for achieving high karma in the system. Building a real
system and deploying it would test it with a much larger number of authors and
documents and real-world situations and most certainly reveal aspects of it that need
to be redesigned. Actual users may not view the system for assigning karmas and

document ratings to be fair and may demand another one.

8.3 From Many Boxes to One

One of the main ideas of this thesis can be stated in terms of the old saw: “think
outside the box.” Despite the Web being less than a decade old, we have already
circumscribed the types of systems that exist on it: for instance, ordinary Web sites,
search engines, directories, collaborative filtering sites, discussion forums, and auction
sites. These are all “boxes” that constrain our thinking. The next generation of tools
needs to combine many of these ideas into single, integrated systems. For instance,
there is little difference in principle between a list of bookmarks (which represent a
single user’s preferences), a directory system such as Dmoz or Yahoo!, which represent
the aggregated knowledge and preferences of a set of user/editors, a collaborative
filtering system such as the IMDB, MovieLens, or Slashdot, which also represent a
set of preferences, and a search engine, which adds a usual text index to a ranking
system which reflects preferences, typically in terms of the number in-links that a page

receives. All of these represent preferences in one way or another, and therefore can be
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integrated into a single system which combines all of their features, allowing the user
to visualize information and participate in communities in a highly flexible manner.
All of them represent instances of the general concept of information filtering, which
needs to be at the core of any successful Web system, although not necessarily its
only component.

Traditionally, information filtering has been a task undertaken by the press and the
publishing /media establishment in general. This operates on a bottom-up followed
by top-down model; authors and journalists submit their articles through an adminis-
trative process controlled by editors, who filter these articles, rejecting some of them,
and accepting and typically modifying others. Then, mass marketing and branding is
used to deliver this information over channels that are often quite oligopolistic. The
Web has the potential to change all this, although it is not clear whether or not it
will, because this model has managed to transfer over to the Web domain without
many changes—the major media outlets now all have Web sites, many of which are
quite successful.

Nevertheless, the Web has vastly lowered the barriers to entry for anyone wanting
to communicate with the rest of the world or with a specific audience; an individual
can easily start a Web site, although building an audience can be difficult. Some peo-
ple with specific interests have already become modestly successful in building “human
portals” [16] that can compete, on some level, for audience with the mass media sties.
Many of these sites feature Web logs, or “blogs”, whose creation has become easy due
to the wide dissemination of software called “Blogger” (see www.blogger.com). A Web
log is a kind of electronic journal with links. People look at these human portals and

follow the blogs of their authors. A blog could also be thought of as an annotated



273

bookmark list. As in a collaborative filtering system, such a document represents, on
some level, the preferences and interests of its author.

In this thesis, I have discussed a variety of ideas that are common at the conver-
gence of the fields of machine learning, information retrieval, and their application to
the Web domain. These have included page classification, page clustering, inverted-
index search engines, and collaborative filtering.

One of the main ideas of this thesis is that there has been an artificial distinction
made between Web inverted-index search engines and Web directories. These two
things would work better of as two aspects of the same system. It is possible to
use an algorithm such as a multi-resolution version of the Naive Bayes algorithm to
automatically classify all Web pages as they are encountered by a spider. Thus, the
directory and the search engine become just two different ways to look at the same set
of pages, with linkages from each page listed in search engine results to the category
of which it is a member.

In addition, the ordering of pages within a category can be specific to that category,
rather than using a global ranking such as Google’s PageRank. This ordering can be
based on linkages within the category (the page having more links from other pages
in the category is ranked higher), or the number of words characteristic of a category
that a page has (normalized by its length), or a combination of these. Contextualized
rankings are superior to non-contextualized ones because they only take account of
category-specific information; global information is of little use to searchers looking
for topical information.

Also, there has been an artificial distinction made between collaborative filtering

tools and search engines and directories. A directory is simply a filtering system
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without the rating attached to each page (since multiple people typically work on each
directory, which is typically so huge that one person cannot produce it—it requires a
whole team). A search engine can be thought of as a collaborative filtering system,
in that it filters information based on its content and, typically, in terms of in-links,
which themselves are created by groups of people. Making a link is a way to filter.
Putting something into a directory is a way to filter.

System architects are energetically planning the next generation of tools that will
be more useful to individuals looking for information, and communities interacting
with information (and I argue that the latter is a better way to think about the search
process®). I argue in this thesis that the best such tools need to involve all of the
techniques discussed herein combined into one, single, simple, integrated system.

Consider what I will call, for lack of a better term, a collective search and sharing
system. In such a system, any one may choose to participate in one or more commu-
nities on the system. Information items, which may include Web pages, formatted
documents such as Adobe Acrobat PDF files, music files, works of art, etc. will be
full-text indexed in the system as much as feasible (image indexing, for instance, may
be difficult). Reverse-keyword searches, as in current search engines, will of course
still be possible. But the system will also make an effort to cluster and classify all of
the information items of which it is aware.

In addition, communities of users within the system with an interest in particular
information items will participate in the collaborative filtering of such items. Each

community will be explicitly identified and trust and prestige filtered in the network,

3The American tendency toward individualism has to some extent blinded us to the usefulness of
community interaction in collective endeavors involving information, whether these endeavors are,
for example, science, writing, or studying specific academic subjects.
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as well as the quality of the documents themselves. Thus documents will get ratings
and users, reputations. Items will be contributed to each “community portal” within
the system either explicitly by the users of that portal or automatically by spiders
that pass their new resources not only to the usual full-text indexer but also to
classifiers or clustering algorithms that decide which portal(s) in which each resource
should be placed. These automatically-gathered resources, along with the manually-
added ones, are available for collaborative filtering by the users of the system. In
addition, the system may attempt to predict the collaborative filtered score(s) for
each document based on document characteristics and its place in the link structure
of the Web. Collaborative filtering and automatic techniques can create a synergy,
where a combined system is more than the sum of its parts. There can be multiple
competing portals on a single topic, but each will probably mine links from the other.

Thus, the result of a Web search will be quite different than what we see today.
Instead of the isolated searcher, the searcher automatically sees her results grouped
into communities of interest with active participants, along with scores that those par-
ticipants have assigned to the content in that community. She can then directly go to
the portal of one of these communities, sign up as a member, and start participating,
or simply view the results as a guest. As she gets more involved with one of these
communities, she can build up her reputation in the community through effort, and
engage with the community in collaborative or individual document creation (where
a document could be a written document, a computer program, a lecture for a class, a
design for a building, a piece of artwork, or a piece of music). These documents would
then be filtered by the community, and organized by the classification, clustering, and

full-text search software. In some cases, there would a market aspect to this; people
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would create documents that other people would purchase (such as companies who
need software written, or a person who wants a house designed). As we can see, the

social potential for such systems is endless.

8.4 Thinking Even More Broadly: Transforming
Society through Collaborative Information
Management and Creation

One can conceive of collaborative activities more even broadly than collaborative
communities involving information. Essentially, the economy, and society as a whole,
is a large collaborative system. The price mechanism in the economy is far from
perfect, because of such problems as asymmetric information [2|, adverse selection
[91], monopolies, and bounded rationality [113]. To cope with such problems, firms,
workers, and consumers have relied on critics and impartial sources of information
(e.g. the Zagat restaurant guide or Consumer Reports) and such strategies as brand-
ing (e.g., in consumer electronics, Sony is viewed as a higher-end and therefore a
higher-quality brand than, say, Emerson). Firms routinely attempt to gather more
detailed feedback on their performance than is given by the simple price signal, for
example by doing satisfaction surveys of their customers on a variety of parameters.

Collaborative filtering systems have the potential to make a major impact on the
economy. The well-known eBay auction site (at ebay.com) has sellers and buyers
rate each other; if a user’s rating, whether they are a seller or buyer, goes too low,

they are kicked off the system. Provided that a mechanism is created for preserving
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identities and reputations—in itself not a mean engineering feat, both technically and
socially—such a system has the potential of solving problems that occur when the
market “game” is only played once.

If a model such as this was extended to the economy as a whole, including the labor
market, markets for consumer commodities, markets for services such as health care,
education, financial, and legal services, and internal markets within supply chains, it
could have the potential of revolutionizing society by reducing the many information
problems with which markets are plagued. Markets would start to function much more
efficiently than they presently do. In addition, the types of learning communities that
presently exist in such specialized economic regions such as Silicon Valley, Hollywood,
and furniture production in Denmark, and in many realms of science and the arts,
might flourish through virtual means [73, 102].

Of course, such systems have to have high levels of participation to function, and
creating the incentives for such participation is difficult, given free-rider problems in
which users gain the fruits of participation without fully participating [46]. It is pos-
sible that studying techniques from survey research may improve participation (see,
for example, [36]). I suspect that increasing user identification with the community
would be even more effective; of course, the best thing would be to do both.

Another possibility is to start to shift the incentive system, since people presently
have little incentive to participate in online activities that have little relation to their
gainful employment. Presently, there are two major disincentives to online publish-
ing. The first is that, unlike publishing on paper, Web publishing has only had mild

positive incentives, which are money from advertising and the fruits of participating
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in an online community.* Only occasionally have people paid cash for individual elec-
tronic documents, and most documents are not available, because of piracy concerns.
Publishing on paper is still more profitable, because you can sell the published work;
companies have not solved the problem of how to sell things electronically without
enormous losses through unauthorized copying, and this remains a huge, unsolved
problem: how to compensate people for their work on the Internet. The second is
that people do not like to read at their computer, because the screen has lower con-
trast and resolution than paper, and has a worse interface (typically scrolling rather
than the preferred codex.) The second of these may be solved before long through
the development of wireless electronic “paper” “books” [31]. In addition, as broad-
band increases, the possibilities for face-to-face interaction through video-phone or
video-conferencing will remove some of the impersonal feel of the Internet. However,
the incentives for the deployment of broadband remain weakened as long as the legal
stalemate on the electronic dissemination of media continues.

Probably more significant than these disincentives is the social inertia of institu-
tions, which is largely due to the entrenched distribution of power. Consider academia.
For students, the incentive system is based on letter grades, for the most part (al-
though faculty recommendations and some non-academic factors also play a role, such
as community service and athletic participation). For faculty, the main incentives are
quantity and quality of research, and the quality of teaching, weighted appropriately
depending on the type of institution.

One could conceive of a new kind of educational institution in which grades were

assigned as a result of participation in collaborative learning communities, and re-

4 And advertising also lowers participation, by “polluting” the net with distractions.
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search was accessed through similar communities of researchers. There would be less
of a bright line between students and teachers; many people would act in both roles.
Grades would be assigned by the collective assessment of the community. People
would be compensated based on the degree to which they contributed to the learn-
ing of others, as measured by the collaborative community itself, and the degree to
which their writing and research contributed to the overall base of knowledge, again
as assessed by the community. Students would pay for the system (perhaps with a
government or endowed subsidy), and faculty would get payments, but some people
would play both roles concurrently. Of course, moving to such a system of governance
and incentives is a radical shift from the present arrangements, and as such is likely
to create resistance. All of the online universities that I know of maintain a sharp
line between faculty and students, although some allow peer assessment among the
students. And online universities have not made much of an impact, in general. The
legal issues here are complex, since some students may object to being evaluated to
anyone other than the faculty.

Or consider firms in the economy. Many have looked to the open source movement
in the software development community as a new model of how people might work
together to create (for more thoughts on this, see, for instance, [68, 69, 96]). There are
tools such as SourceForge (at www.sourceforge.net) which developers use to develop
software together. But many other types of knowledge workers, such as lawyers,
doctors, accountants and financial professionals of all stripes, architects and other
visual designers, artists, musicians, and engineers, could potentially make use of the
Open Source model, “ported” to their field. Again, collaborative communities would

access the work, and customers for the work would pay for it. Traditional hierarchies
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within firms would play little role— instead, workers would be sought on the basis of
their proven ability to contribute to projects.

Collaborative systems that manage information well and help people create new
ideas, using all of the best qualities of people and machines, have the potential for
great enrichment of the human experience. Such systems tend to be relatively non-
commercial, democratic, merit-based, and decentralized. Contrast this with the in-
stitutions that we have today, which are often overly commercial, non-democratic,
sometimes not based on merit (but, for instance, on “who you know” or on how good
or extensive one’s marketing and public relations is), and hierarchical. It appears to
me that the near future will involve a choice between these two types of institutions,
and it is not at all clear what will be chosen. Commercial interests are working hard
at building a commercially-based next-generation Internet, which will probably look
like some sort of combination of America Online and cable television. But further
work on creating alternative collaborative systems and making them function as well
and as fully as possible—which is just as much a problem of human and social engi-
neering as it is a technical problem—will improve the chances that such alternative

systems will be embraced by the public.
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