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' Modeling the Brain

A neural-network approach to natural-language processing and
similar problems may be the key to building systems that “learn”

THE IDEA OF simuiating the brain

formed the foundation for much of the

early work in artificial intelligence. The

brain was seen as a “neural network,”

that is, a set of nodes, or neurons, con-
nected by communication lines. Lately,
there has been a substantial revival in the
use of neural-network models, or con-
nectionism, as the field is often called
{see reference 1). Connectionist models
are applicable to a variety of cognitive-
science problems, including natural-lan-
guage processing, speech processing,
and vision.

One major advocate of connectionism
is Daniel W. Hillis. His Connection Ma-
chine is more brain-like than a traditional

computer, Hillis points out that in a con-

ventional computer, most of the silicon
lies inactive most of the time. At any
given time, only the CPU and a very
small part—a few bytes—of the memory
are active (see reference 2). The Connec-
tion Machine is composed of many
processor/memory units, most of which
are active at the same time. Douglas R.
Hofstadter (see references 3 and 4) has
long been an advocate of a similar view of
cognition, with interacting actors in a
cognitive process exchanging messages.
On the simplest level, the brain func-
tions as follows: Neurons activate or in-
hibit the firing of other neurons. Whether
or not a particular neuron fires depends

i on the inhibitory or excitatory inputs

from all the neurons connected to it.
Somehow, the activations of all the ney-
Tons, how they communicate with one an-
other, and the netvous system’s interac-

- tions with the environment determine

Matthew Zeidenberg

your memories and thoughts—at least as
far as philosophical materialists are
concerned.

Of course, neurophysiologists, while

still largely in the dark as to the operation
of higher cognitive functions, have
learned a great deal more about the brain
than is evident in this simple model.
Nevertheless, scientists in the 1950s were
amazed at what simple systems of nodes
with excitatory and inhibitory connec-
tions could do. (See the text box “The
Petceptron Controversy™ on page 240.)

In 1943, Warren §. McCulloch and
Walter Pitts proved that any neural-net-
work model in which a finite amount of
information could define the state of an
individual neuron could be modeled on a
standard computer. The ““finite amount
of information” assumption is a big one:
The number of bits needed to describe the
state of a given neuron may be so large
that it makes the simulation slow and
impractical.

Is the Brain Relevant?

A strong school in Al feels that studying
the brain is not the most fruitful road to
understanding thought. The brain repre-
sents just one way of making a thinking
machine, and certainly not the optimal
way. Traditiona]l Al sees thought as a
series of problems to solve, and believes
strongly that there is no philosophical
reason why a computer can’t solve them.
The basis for this belief is the Church-
Turing thesis, which roughly states that if
a function is computable, you can com-
pute it with a conventional computer—
formally, a Turing machine. This thesis

“cannot be proved, but it is widely ac-

cepted because no one can think of a
counterexample.

Daniel Dennett of Tufts University
argues that neurophysiologists, working
from the “bottom up”—that is, from the
minute details up to the overall problem
10 be solved—in an attempt to understand
human cognition, and computer scien-
tists, working from the “top down,” may
ultimately both reach their poal. But he
thinks the computer scientists will reach
it first (see reference 5). The argument is:
If I take a computer running a spread-
sheet, and try to figure out what the pro-
gram is doing by looking at the electrical
currents inside, I won’t progress as
quickly as I would if I tried to write an-
other program that also runs a spread-

. sheet,

In an approach that is in between those
of the neurophysiologists and the more
traditional Al researchers, David E.
Rumelhart, James L. McClelland, and
their colleagues don’t dismiss the brain
as irrelevant to the functioning of the
mind. Rather, they. feel that, by experi-
menting with neural networks, they can

-gain insight into how the brain copes with

the problems it has to solve.

Parallelism

Another reason for studying brain-like

models is their parallelism. The “circuit-
- continued
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MODELING THE BRAIN

Until we build effective
parallel-processing
hardware, connectionist
models are unlikely to
provide computationally
efficient solutions to

Al problems. |

ry” of the brain is much slower than 2
computer’s. In order for the brain to work
as fast as it does—psychologists have
shown that we can recognize objects in a
split second—many neurons must work
in parallel. In contrast, many Al pro-
grams run very slowly. The hope is: If we
can find ways to run Al programs in par-
allel, they will run in a reasonable
amount of time.

Parallel computation has been a busy
area in computer science over the past 10
years. Most mainstream research on par-
allel computing is quite different from the
neural-network approach. Researchers
have studied algorithms for mesh-con-
nected arrays of processors, pipelines,
processors arranged in a tree-like fash-
ion, and distributed systems of intercon-
nected processors, to cite just a few.

Neural networks represent only one line
of research in parallel computation. Basi-
cally, you must answer two fundamental
questions in designing a parallel computer
system: How do you connect the proces-

sors for communication purposes? And
how much computing power and memory
do you put in each processor? Many re-
searchers find no reason to restrict them-
selves to neural-network models, which
represent a very small subset of the possi-
ble parallel-computing models.
Nevertheless, neural-network re-
searchers think that their models, by be-
ing most faithful to what we know about
the brain, will show the most success.
Unfortunately, neural networks have sel-
dom been built in hardware; normally,
they must be simulated in software.
These simulations have typically been
very slow, since one processor had to do
the work of many. Until we build effec-
tive parallel-processing hardware, con-
nectionist models are unlikely to provide
computationally efficient solutions to Al

preblems.

The Connection Machine

One attempt to build a paralle] computer
is Hillis’s Connection Machine, which
has many small processors, each contain-
ing a small amount of memory. The ma-
chine has a fixed architecture—that is,
certain processors are physically con-
nected to certain others. Any pair of pro-
cessors not physically connected can
communicate in software via special pro-
cessors called “routers,” which exist to
forward messages. It is critical that con-
nections between processors be program-

. mable so that the machine is not limited

in the types of networks it can realize.
Hillis’s machine can realize a wide va-
riety of network models. It can adapt it-
self to the mesh-like architecture used in
image processing, as well as to conven-

Figure 1: In a typical neural nerwork, every node has an activation, and every
connection between nodes has a weight. A rule, which varies from network to
network, governs the way in which weights and activations change over time.
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tional semantic networks for knowledge
representation. Recently, the Connectiop
Machine has shown that it is well suited tq
database tasks, which are closely related
to semantic networks. Hillis’s company,
Thinking Machines Corporation, hag
built a prototype of the machine, which it
is marketing. The company provides gz
version of the popular Al programming
language, LISP, that allows you access to
the power of parallelism without having
to know the details of the machine. Op
the Connection Machine, you can imple-
ment a neural network in hardware rather
than in software, so the network will run
much faster.’

Varieties of Neural Networks

Most neural-network models owe some-
thing to perceptrons but are more gener-
al. The typical neural-network model
consists of a set of nodes, or neurons, and
connections (see figure 1). Each node
contains a real number, which is its acti-
vation. Each connection also contains a
real number, its weight. These numbers
are usually positive and usually have a
maximum value. Some of the units are
connected to input and output. The
weights represent the strength of the con-
nection between two neurons.

Generally, 2 neural network is a dy- '

namic system, moving from one state to
the next. As such, it has a mathematical
rule that takes the system from one state
to the next. An infinite number of such
rules are possible. However, we usually
want to constrain our models to those that
influence the activation of a given node
based only on the activations of the nodes
connected 1o it and the weights of the con-
nections to those nodes.

Neural networks are not explicitly pro-
grammed like a conventional computer.
Rather, they obey laws, or rules, like a
physical system. You must program a
conventional computer, but a neural net-
work simply behaves, Neural-network

designers view this as an advaptage, since

it provides a mechanism whereby intelli-
gence can arise from physical law.

One of the simplest of these rules is a
linear rule. You compute the activation of
a given node as the sum of the products of
the weight of each node it is connected t0
and the strength of that connection. Often
such a rule is thresholded: Values that 2o
above a certain threshold are cut-off, to
avoid atbitrarily large activation values.
There are many variants of linear rules.

Another rule, suggested by D. O.
Hebb (see reference 6) strengthens the
connection between two nodes that are
highly activated at the same time. Some
versions of the Hebbian learning rule
allow inputs, called teaching inputs, to in-

continued
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MODELING THE BRAIN

The 1950s brought substantial inter-
est in what neural networks could
do. After ali, if we understood their be-
havior, we would be able to understand
the brain and the mind. That was the
hope. One of the most popular variants
of the neural network was the “percep-
tron,” invented by Frank Rosenblatt.
The perceptron was & ‘‘perception
machine.”

Perception has always been the most
difficult area in- Al, and the area in
which the least progress has been made.
The ability to decipher the world, to
break it up into meaningful parts, is a
human ability of astonishing com-
plexity. .

Ironically, areas that people view as
difficult—like playing chess or solving a
chemical structure—are areas in which
Al programs have had the most success,
although they seldom equal the abilities
of the best human experts.

Yet, the computer has not been pro-
grammed ‘that can learn a language the
way any infant does, or given a scene of
any room, can recognize all the objects
in the room. Thus, machines that can
perceive have always held special in-
terest.

What Is a Perceptron?

* A perceptron is a neural-network model
with an array of input units, each of
which can take on the value 0 or 1. This
artay is called the retina, in analogy to
human vision.

_ The perceptron also has another array
of units called the predicates. Each
predicate can be connected to any subset
of the units in the retina and can compute
any linear function of the values of these
units.

Finally, the predicate units are con-
nected to one or more decision units,
which return a single answer—yes or
no—depending on the values of the units
in the retina. Thus, a perceptron can
perform an elementary classification
task—that is, it can classify input pat-

The Perceptron Controversy

terns by some property. Since percep-
tion is basically a classification problem
{i.e., classifying objects as chairs,
tables, or whatever), the hope was that
the perceptron model, properly elabo-
rated, could account for complex per-
ception. -

The Great Debate

The controversy over perceptrons con-
tinued for some time, and in 1969, Mar-
vin Minsky and Seymour Papert wrote a
formal analysis of perceptrons (see ref-
erence 7), or, more precisely, the sin-
gle-layer percepiron, which squelched
interest in them. ' :

Minsky and Papert proved, mathe-
matically, that there were certain func-
tions of input that the single-layer per-
ceptron could not compute. One of the
simplest was the parity function, which
tells if the number of ones in the input is
even or odd. If the perceptron could not
compute such a simple function, they
reasoned, it could hardly perform the
complex tasks required for perception
and intelligence.

At the time, Minsky and Papert’s
work appeared to have destroyed per-
ceptrons and perceptron-iike models as
viable lines of Al research. Little atten-
tion was paid to the fact that they di-
rected their criticism at a very simple
system, the single-layer perceptrof.

If you add one more layer of units be-
tween the input units and the predicates,
the computational power of the machine
rises abruptly, and Minsky and Papert’s
critique no longer applies. And if you
add multiple lavers, it is difficult to
characterize formally the network’s
behavior.

This difference was not well under-
stood at the time, and Minsky and
Papert’s work put a strong damper on
research. It didn’t discourage everyone,
however: Throughout this time, Steven -
Grossberg of Boston University con-
tinued detailed studies of brain-like
systems.

fluence the change in weight. This type
of rule is a formalization of associationist
psychology. which holds that agsocia-
tions are built up between things that oc-
cur together.

Competitive Learning
Learning is, perhaps, the most important

phenomenon in psychology. Early neu--

ral-network researchers were anxious to
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show how networks could learn patterns
in the input presented to them—that is,
how they could come to perceive these
patterns on their own.

One of the methods that various re-
searchers have devised over the years is
competitive learning. This method has a
bottom level of input units that contains
the pattern to be input to the system. The
Jevel above the input units consists of

clusters of units. Each unit in a cluster
competes with the other units in the clus-
ter for the right to recognize an input pat-
tern. Over a learning period, each unit in
a cluster comes to Tecognize a subset of
the patterns presented to it. Thus, each
cluster represenis a classification, or
group, of input patterns.

In competitive leaning, each unit in
each cluster is connected to all the input
units. The weights of the connections are
initially set to random values. The random
weights cause cerfain units in clusters to
start responding more to particular input
patterns, since the weights of the connec-
tions to particular input units are stronger
to some than to others.

As the learning proceeds, the weights
change. As particular units in the cluster
become sensitive to particular units in the
input pattern, the weights connecting the
associated pairs of units increase, at the ex-
pense of unassociated pairs of units. Differ-
ent units in the same cluster inhibit each
other, so that only one unit in a cluster
“wins” the right to recognize a given
pattern.

Thus, over time, different units in a
cluster come to “recognize” different
properties of input patterns. For instance,
a cluster of two units might separate all
the input patterns into those that are
mostly on (i.., have most of their units
highly activated) and those that are
mostly off. Larger clusters would make
more discriminating classifications.

There may be an additional level of
clusters that uses the first leve! of clusters
as its input pattern. This level could ex-
tract more complex features from the bot-
tom-level input pattern.

Rumelhart and David Zipser applied
the competitive-learning paradigm to Jet-
ter and word recognition. Letters were
represented by bits on a grid, which was
the input pattern for the competitive-
learning system. The system came 10
spontaneously recognize an “A” and a
“B” in a fixed position on the grid.

This is very interesting, for it illus-
trates a potential mechanism by which
people may have learned to recognize let-
ters. This mechanism is completely gen-
eral, since it presupposes nothing about
the letters except that they can be distin-
guished from one another. ‘

Boltzmann Machines
An impertant class of neural networks
simulates the behavior of physical sys-
tems. Physical systems have a tendency to
move into states of minimum potential
energy. A simple example of this is 2 ball
rolling into the valley between two hills.
At the top of the hill, potential energy is
high; in the valley, it is low.

continued
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In a distributed

network, nodes don'’t

have a simple meaning;

rather, an individual
concept is represented

by a pattern over all

the nodes.

This process is called relaxation. John
Hopfield has shown that a certain simple
evolutionary rule for a neural network
will lead to relaxation. Systems such as
Hopfield's, which resemble thermo-
dynamic systems like the atoms in 2
room, are called Boltzmann Machines,
after Ludwig Boltzmann, a physicist who
made major contributions to thermo-
dynamics. Boltzmann Machines are
widely used in a variety of neural-net-
work applications. _

In vision and n playing games, you can
often formulate solutions to problems,
such as recognizing a set of objects or dis-
covering the best move, as constraint-satis-
faction problems. For instance, in chess,
the constraints are the possible ways that a
piece can move, and the total “goodness™
of the move, as measured by some formula,
taking into account pieces captured, board
position, and so on. Relaxation can corre-
spond closely to constraint-satisfaction—a
Boltzmann Machine can satisfy constraints
automatically.

Distributed Representations

One important feature of many neural-
network models is their distributed na-
ture. A standard semantic network, like
those used in early knowledge-represen-
tation schemes, consists of a set of nodes
connected in some fashion. Each node
represents a single word or concept. If the
network is “thinking” of the word “cat,”
the node for “cat™ is activated, and all
other nodes are not. This is a local
representation.

In contrast, in a distributed network,
nodes don’t have a simple meaning;
rather, an individual concept is repte-
sented by a pattern over all the nodes. For
instance, if there are 10 nodes, activating
nodes 1, 3, 4, and 7 might represent the
concept “gorilla,” while activating nodes
2,4, 5, and 7 might represent the closely
related concept “chimp.” Concepts that
are closely related have similar rep-
resentations.

A parallel distributed-processing
(PDP) network, a neural network that
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uses distributed representation, offers the
advantage of automatic generalization. If
1 want to represent the concept “gorillas

" are hairy,” I strengthen the connection

between all the nodes composing the ¢on-
cept “gorilla’ and all the nodes compos-
ing the concept “haify.” As 2 result,
since most of the nodes in “gorilla™ are
also used in “chimp,” an association is
also made between ‘‘chimp” and
“hairy.” This is how automatic general-
ization works. In a local representation,
where “gorilla” and “chimp” are repre-
sented by separate nodes, a connection
between “gorilla” and “hairy” would
not imply a connection between “chimp”
and “hairy.” ’

Another advantage of a distributed rep-
resentation is its insensitivity to damage.
In 2 local representation, if the system
loses the node representing “grand-
mother,” it loses its concept of grand-
mother. People don’t display disorders
like this; there are no people who are
completely normal except that they have
lost their concept of grandmother. This
has led to the opinion that the brain
doesn’t use local representation.

In a distributed representation, in
order to lose a concept, you must lose al
the nodes representing it. If you lose only
one or two of the nodes, the concept may

“be degraded, but it’s still there. This is

closer to the type of memory loss seen in
older adulis: Memory is degraded in a
uniform fashion.

Schemata

One criticism of neural-network models
is that they 're not as flexible at represent-
ing knowledge as standard methods are.
The standard methods include the local
semantic network, of which Marvin
Minsky’s frame and Roger Schank’s
script are varieties. For instance, a frame
description of a bedroom would contain
information about all the objects in that
room and how they relate to one another.
The relations between obiects are repre-
sented by labeled links.

Cognitive psychologists, notably de-
velopmental psychologists like Jean
Piaget, use the concept of a schema. A
schema is a mirror—in the mind—of 2
real situation. As children, and as adults,
we learn new associations and relations
between objects and integrate them into
our schemata.

It’s not immediately clear how a neu-
ral-network model can account for
knowledge represented in a schema;
however, Rumelhart, Paul Smolensky,
McCleliand, and Geoffrey Hinton have
shown that it’s possible. They first gath-
ered data from subjects about rooms—
kitchens, bedrooms, offices, living
rooms, and bathrooms. They took 40

words associated with rooms and askeg .

each subject whether each word was as.
sociated with each room. Then, they set
up a network that had each of the 49
words represented by a single node. They
set the weight of a connection between
two nodes to correspond to the extent to
which the two tended to be used together
when a single subject described a singje
room. :

The network uses Hopfield’s energy-
minimization rule. When a single de:
scriptor is “clamped on” (i.e., when itg
activation is permanently set to its maxi-
mum value), the system relaxes into one
of five states, or rooms, since each room
implies a constraint as to which words
can occur together.

In the network, you don’t explicitly de-
fine the schemata; you only set the asso-
ciations between pairs of descriptors. The
schema emerges out of the network as a
natural consequence of its behavior.
Thus, the schemata are not explicitly rep-
resented in the network, but rather are
simply patterns of activation across a'set
of descriptors.

This system has several nice proper-
ties. First, it explains how schema are ac-
tivated when you have incomplete infor-
mation—that is, why you think “kitchen”
when you see “refrigerator.” This corre-
sponds to the ““clamping on” of a single
descriptor.

Since schemata are patterns rather than
single units, this system allows for more
flexibility in representing things. A
slightly different version of a particular
object can correspond to a slight change
in the weights. And closely related sche-
mata, such as “woman’ and “girl,” can
overlap. In a more elaborate scheme,
each descriptor in a schema can itself be 2
schema. The number of connections you
need, however, rises quickly.

Cognitive Hierarchies

Often neural-network models are ordered
into hierarchies. Several levels exist in
such a hierarchy, each composed of a set
of units. Typically, units that receive in-
put are at the bottom of the system, and
units that give output are at the top. In 2
bottom-up system, units at each level
connect to other units on their own level
and influence units on levels above them.
In a top-down system, units again connect
to units on their own level but influence
units on levels below.

Top down and bottom up are familiar
concepts in cognitive science. For in-
stance, in sentence perception, these
terms refer to how different-size linguis-
tic elements, the phoneme (sound), mor-
pheme (word element), word, phrase,
and sentence, interact with one other.

continued
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The HEARSAY-II speech-recognition
program from Carnegie Mellon was one
of the first Al programs to integrate
knowledge from several levels, storing its
results in a global data structure called
the blackboard.

Does the overall perception of a word
help you to perceive all the letters in it
individually, in a top-down fashion?
Most psychologists would say ves. For in-
stance, psychologists have done experi-
ments in which they show subjects non-
words like BCAK and PLAM; the
subjects interpret these words as BACK
and PALM. The theoretical explanation
is that the units representing letters acti-
vate the units representing words in a
manner that is somewhat insensitive to
the letter’s position in the word. The unit
for the whole word actually influences
the perception of the individual sound,
Neural-network models exist that mode]
this process and others like it.

For example, in McClelland’s pro-
grammable blackboard model of reading,
units for letters and units for words are
connected by a grid. A connection in the
grid between a letter and a word is setto a
positive value if the letter is in the word,
and to zero if it isn’t, The letter units rein-
force the word units in a bottom-up fash-
ion, and the word units influence the acti-
vation of the letter units in a top-down
fashion. Thus, the network converges to
the perception of a single word at a time.

The programmable blackboard model
does not handle the perception of individ-
uai letters, but you could readily add a third
level to the system, a level of letter sub-
features. Information would pass up and
down in the network, from letter subfeature
to letter to word, and back down again.

A Parallel Reading Network

Orne problem in creating a reading net-
work is that people tend to read more than
one word at a time. Since a single net-
work reads only one word, it can’t handle
this. If the network tries to read more
than one word, you get “crosstalk™; that
is, if the input words are “bark” and
“lane,” the network will perceive both
the two inputs and *lank”™ and *“bane” as
well. As a solution, McClelland proposes
duplicate copies of networks. Duplicate
individual word-recognition networks
would have programmable connections
instead of hard-wired connections be-
tween letters and words.

In addition to programmable net-
works, you could have a hard-wired net-
work that represents the relationships
between letters and words. This network
programs all the programmable networks

1 via connections to them. Thus, you could

represent knowledge centrally instead of
continued
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baving to duplicate it several times. You
can save memory space by loading a pro-
grammable network with only knowledge
relevant to processing the word it currently
encounters, McClelland has worked out
the details of his model thoroughly.

The programmable blackboard model
accounts for psychological data concern-

ing such things as parallelism in reading -

and word misperception. It shows how
useful the psychological modeling ap-
proach to Al is: In explaining a good deal
of psychological data with a model, we
get a system that is quite good at the job at
hand. McClelland has constructed a simi-
lar model of speech recognition and built
a model of a higher-level process.

Processing Sentences

One important aspect of sentence under-
standing involves determining the various
roles that the different parts of a sentence
play. For instance, consider the following
two sentences:

The house rented for $2000.
The man rented the car.

In the first sentence, the house is the
thing rented; in the second, the man is the
agent of the rental. Yet in the two sen-
tences, the nouns “man” and “house”
are in the same position. Somehow, the
model must discern their different roles.

McClelland and Alan Kawamoto have
developed a connectionist system to do
this role assignment. Words are de-
scribed by “semantic microfeatures”—
basic dimensions that describe many ob-

jects and actions. For instance, two of the

microfeatures describing nouns are
human and softness, which have the
values “human, nonhuman” and *“soft,
hard,” respectively. Words are not di-
rectly represented in the system’s net-
works, but in terms of the activations of
units representing microfeatures.

The model has a group of units for each
of the major roles that different nouns can
play in an action. These roles are Agent
(actor), Patient (acted upon), Instrument
(thing used), and Modifier (adverbial
word or clause). For instance, the sen-
tence “The man ate the sandwich” would
activate the microfeatures of “ate” and
“man” in the set of units that corresponds
to the Agent; this represents the fact that
the Agent for the verb “ate” is “man.”

The system is trained on a series of sen-
tences. The correct role assignments for
the training sentences are shown to the sys-
tem. These assignments correspond to the
activations of particular nodes. The system
adjusts the connections between these
nodes so that they reinforce one another.

After being trained on a sufficient
number of sentences, the system can

* longing to “boy,

make correct role assignments for ney
sentences. It can even make accurate rols
assignments for sentences with some syp.
tactic ambiguity. For instance, in the sep.
tence “The man hit the boy with the mal-
let,” the system figures out that “malleg”
is the Instrument of “hit” instead of be-
microfeatures that fit in well with it being
an Instrument.

The system also handles a number of
other problems well, and generally does 5
good job in assigning roles. McClelland
and Kawamoto are currently considering
ways of expanding their system into
more complete language-understanding
model—for instance, one that includes a
network to parse sentences.

The Promise for the Future

Neural networks are good for a variety of
natural-language processing tasks, includ-
ing letter recognition, reading, and sen-
tence understanding. They are also useful
in storing knowledge in schemata and in re-
trieving items frorn memory. They are not
a cure-all for what ails Al and cognitive
psychology, but they do bring a strong and
biologically plausible new direction to
many important problems.

Eventually, a connectionist model will
probably be built of the naturai-language-
understanding process, since, as psychol-
ogists have shown, it involves integrating
knowledge from many domains, includ-
ing phonetics, morphology, syntax, and
semantics. Connectionist models are par-
ticularly good at integrating these types
of knowledge. B
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