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INTRODUCTION

Accurate modelling of economic phenomena has always been one of the. main
concerns of economists. Most attempts to understand the economy have been either
model-driven, statistical, or both. A theory based on optimising behaviour is formu-
fated and a testable hypothesis derived from the thetretical model is checked against
economic data. Statistical tests enable economists {0 reject incorrect hypotheses to
the desired degree of confidence. Specification of financial models has tradition-
ally been done in partial equilibrium. Both capital asset pricing models (CAPM)
and arbitrage pricing theory (APT) derived models attempt to describe asset price
behaviour based on optimisation in partial equilibrium. Such models have been very
useful in expanding our understanding of stock price behaviour. Nevertheless, many
empirical financial anomalies have remained unexplainable. It is possible that this
may be due to the partial equilibrium nature of these models. Atlempting to model
financial markets in a general equilibrium framework still femains analytically
intractable,

Stock prices, because of their highly chaotic nature, are notoriously  difficult
to model with standard methods such as least-squares regression. In recent years,
there has been great interest within the scientific comraunity in discerning patterns
in such highly chaotic data, since such data are present not only in economic tme
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series but also in the behaviour of other dynamical systemns such as weather patterns
and ecological models. Models that reveal systematic trends in economic data may
be generalized 1o other domains.

Because of their indactive nature. neural networks, like other statistical models,
can bypass the step of theory formulation altogether, or can be combined with prior
knowledge of the characteristics of the system. They can infer complex nonlinear
relationships between variables that are given as their imput and variables that
are. given as their output. There are four types of neural network that suggest
themselves for the modelling of time-series data: feedforward backpropagation
networks; recurrent backpropagation networks; cascade-correlation networks; and
networks based on the temporal difference method of Sutton. We explore the use of
feedforward backpropagation networks, temporal difference models, and cascade-
correlation networks in the case of stock-market time-series data,

Neural network models are fitted to daily stock prices. The estimated parameters
are used to obtain one-step-ahead forecusts. Learning achieved by this system is
compared to traditional statistical techniques.

The next section sets out the econometric methodology that is commonly used.
Then the estimation results are presented and discussed, and possible directions for
further study-outlined. ’ ‘

ECONOMETRIC METHODOLOGY

The efficient markets hypothesis (EMH) has found broad acceptance in the financial
community. In its weak form, the EMFH asserts that an asset price is a reflection
of all the information that can be gleaned from past price behaviour. This implies
that the movement of an asset’s price is completely unpredictable given its history.
Thus, technical analysis cannot provide a financially profitable investment strategy.
The intuitive reason behind the unpredictability of asset price returns is similar to
the reason why one rarely finds money lying on the ground. Nobody disputes the
fact that money does indeed fall out of people's pockets but, when it does, it tends
to be picked up fairly quickly. Profit opportunities in financial markets are exploited
at their inception. 5 :

Traditional tests of the EMH have involved estimating a linear autoregressive
model of asset returns and testing the joint null hypothesis that. the coefficients
of the lagged returns are equal to zero. Nevertheless, the inability to refute the
null hypothesis does not imply an affirmation of the EMH, It simply may be that
eventual underlying nonlinear patterns are undetectable using linear methods.

Neural networks are a rich class of functional forms that are capable of approx-
imating arbitrary Borel measurable functions [HekrPa91]. This property allows us
to exploit nonparametric estimation methods based on these neural networks. These
models can be viewed as an input-output system of a particular form. A general
neural network describes a4 mapping between a vector of inputs and a vector of
outputs. The simplest model is constructed in the following form: define a | x r
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vector of inputs X and a 1 x p vector of outputs ¥. Thmr interaction can be
described as:

Y =X8

where 8 is the connection strength mairix of size r X p. If we assume that one of
the input neurons exhibits a value of one at all times, we then have the multwarmte
linear statistical model with an intercept term. In theary, each of the X inputs could
be processed in paraliel, which is one of the main analogies between this model
and the brain.

The family of models described above is only capable of apprommatmg quaﬂi
linear models. Even with a slightly more sophisticated underlying structure (say,
quadratic terms), it performs poorly. This led to the development of more complex
networks by applying further analogies with neural function in the cerebral cortex.
Intermediate processing layers were mtmduced between the input and output. These
layers are called ‘hidden’ since it is not possible to obtain empirical obsetvations
on them. The output of this network model can be described as follows:

Vi =t | }_Jﬂt; i) By | = filX,0),

where 8 = (B1. ... . Bp) and y' = (i, ... . ¥y) are the connection strengths, i
and o; are known fumtmm and 8" = (§, ¥). ,

In backpropagation, a member of the family of smooth and m«*motomcally
increasing functions, for example the sigmoid function

1
: ST TR S
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is used as the activation function a;. Without foss of generality and mr compu-
tational simplicity we define the output pmcessmg function g 1o be the identity
function.

Alternative choices of activation function are possible. One example that time-
series econometricians are familiar with is letting ¢; equal the sine function. We
therefore get the spectral analysis model where a linear combination of sine func-
tions at different frequencies can approximate any function arbitrarily closely.

The backpropagation method is implemented on 8 using recursive m-estimation,
namely: '

Oyit = 6, =0,V X, 0) (¥ = fi(X, )

where 7, is the learning rate, Vy is the gradient and H is an arbitrary starting value.

EMPIRICAL RESULTS

For our estimation, we selected six stock price data sets from different industries
in an attempt to avoid sector-specific idiosyncrasies. They are the stock prices of
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Citicorp (CC, John Deere (DE), Ford (F), {ieneral Mil}j@ (GIS)y, GTE, and Xerox
{XRX), We use daily temporal aggregation. The observations span the period from
4 Jpnuary 1988 10 31 December 1990, The total number of daily observations is
758, Al our data are from the Center for Research in Security Prices (CRSP).

We divided each data set into two portions. The first portion, which, following
general practice, we call the training set, is used to construct the network model and
spans the period from 4 January 1988 to 29 December 1989. The second portion
i uged 1o est the validity of the model on data not used to produce the model,
that is, what is cormonly referred to as ‘generalisation’ performance. The dates
for this portion span the period from 2 January 1990 to 31 December 1990,

Tuble 8.1 presents summary statisnes of the data. It shows the division of each
data set o two portions, with dawes, sample means and standard deviations for
the training and test sets in each of the six cases. The variables in Table 8.1 are
one-day returns for holding the stock in question. The closing values are used to
represent the daily y price,

The wverage dm&y return of the siyv stocks, CCL DE, F, GIS, GTE, and XRX
for the training period is 0.0010% and for the test period is —0.0009%. The most
volatile stock during the training period was CCI, with a standard deviation of
0.0202%, The most volatile stock during the test period was also CCIL, with a
standard deviation of 0,0267%, The least volatile stock, for both the training and test
perivds, was GIS, with standeed devintions of 0.0127% and 0.0158%, respectively,

We implemented the backpropagation algorithm using the signs of stock returns
s inpats and oulpuls, A similar technique was used in a previous paper by the
authors dsing ief!m*r‘af stocky and a different sample period. For each of the six data
sets CCL DE, B, GIS, GTE, and XRX, we used a network of nine input units, five
hidden unis ami one output it This reprosents 4 'model of (9 x 5 -+ (5 x | } o=
30 weights or parmmeters, Backpro pagation is more pammomom m number mf
parameters than the equivalent linear polynomial expansion with 2° — 1 = 511
parameters, As a side note, an alternative specification using signed magnitudes as

Table 8.1 Summary statistics of the data set

Variable Sample Start date Erid date ~Mean Sted. Dev.
< Train 4/1/88 29/12/89 0 0013 0,0202
Test 2190 3412740 {50026 0.0267
e Train 4/ 1/88 29/12/89 0.0013 00158
Test 21590 31/12/90 = {30008 O.0190
P Train 4/1/88 29/12/89 (.0006 00150
; Tost 20 REVANICT O «~(.0015 0.0169
s Train 4/1/88 AG/1 /89 0.0010 )
- Test 271 i‘ () 311290 G.0014
{18 "}"mi:‘a 41788 A9/1 /88 0.0017 30135
o Test j, /14 /1390 -=(3.0004 0.0168
XRX Train f§ 8 A1 2/89 (3.0003 0.0135
Test 3“.2(3 311200 =0, 0015 0.0167
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inputs and signs and magnitudes as two separale outputs was atferapted. It did not
perform very well. :

As an illustrative example, to predict the value of CCI at period (day) ¢ (corre-
sponding to the output unit), we used the signs of the returns for the past five
periods t — 1, ... .4 — 5, as well as the return between rand 2~ 10 (two weeks),
¢ — 22 (one month), ¢ — 132 (about six mouths), and ¢ — 264 {about one year), for
a total of nine inputs. Positive asset returns are coded as a 1, while negative asset
returns are coded as a 0. We have experimented with varying the number of hidden
units and found five to be an adequate compromise. General experience: has led
researchers to choose a number of hidden units less than or equal to the number
of inputs.

We performed backpropagation learning on the training set for 200 iterations
or epochs, where an iteration represents one complete pass through the input data,
altering the weights in the network, We recorded the total error sum of squares
(TSS) of all the training patterns. We considered, as is gederal practice, the output
unit to be predicting a positive sign for the subsequent return it (a sigmoid-unit)
output above 0.5, and negative below 0.5. The performance is the percentage of the
time that the predicted output agrees with the true output. We also calculated the
RMS error. the number correctly predicted, and the average output of the network
for each set. Table 8.2 presents the results of the neural network estimations on the
financial data series, The TSS error and the RMS error are reported for all the asset
price measures for both the training set and the test set. The average direction of
asset price change, which corresponds to the average value of the-output; is also
presented. For the daily asset prices, the average output in the training set equals
0.4412 and in the test set equals 0.4148. This means that the neural network model
predicts an upward movement approximately 44.12% of the time and a downward
movement the remainder of the time (in the training set). This is broadly consistent
with one of the implications of the random-walk hypothesis in which upward asset
price movements should occur just about as frequently as downward movements.

The lower portion of Table 8.2 presents the actual performance statistics of the
backpropagation algorithm in- and out-of-sample. The number of correct signs of
the asset price returns coming from the model is compared to the actual data séries.
The percentage of correct signs is calculated for both the training and test runs.
Standard deviations are also calculated for the percentage of correct signs under
the null hypothesis of the model actually having a 0.5 probability of estimating
the direction of change correcily. The probability of a type 1 error, namely the
probability that we would get the percentage of correct signg that we report given
that the model was providing absolutely no explanatory power, is also presented.

The percentage of correct responses ranges from 48.22% for the DE test set to
60-.87% for the CCI test set. The average percentage of correct responses for the
training sets was 60:20% and the average percentage for the test sets wag 55.01%.
As is usually the case in many such experiments of this type, the performance
on the training set (after traiming) usually exceeds that on the test set. This 15
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because the training process tends to fit characteristics of the rafning set that-are
not generalisable (so-called ‘overfitting”), that is, it fits ‘noise’ in the training set
as well as signal. Therefore, it is not desirable to train the training set beyond-a
certain number of iterations, since in the early stages of learning it learns the firsts
order’ characteristics of the training data, which are more likely to correspond to the
true model, In subsequent iterations, the model learns ‘second-order’ characteristics
which vary from data set to data set and would prove 10 be of no help in attempts
to generalise. : ,

The estimated percentages of correct responses for the training sets are all more
than two standard deviations from the value maintained under the null hypothesis,
with the exception of DE. The standard deviations range from 1.1125-for DE 10
6.6304 for CCI, These values correspond to very low probabilities of type I errors
in the training set, with the highest value for all stock measures being 13.35% for
DE (all the rest are virtually zero),

in the test sets, the estimated perceatages of correct responses. range from
—(1.5658 10 3.4578 standard deviations from the null of 0.50. The probability of a
type I error in the test set ranges from a high valug of 71.23% for DE to 0% for
CCl and F. ‘ -

These results provide evidence that backpropagation models are able, using
previous asset returns, to provide some predictive power for future returns. This
result is evidence against the weak form of the EMH. With respect to DE, GIS,
GTE and XRX, the test sets did not provide gvidence of prediction abilities: This
result is in accordance with the result of White [White88] who was unsuccessful
in forecasting IBM daily stock prices using neural networks.

Viewed jointly, all six asset prices give a chi-square statigtic of 13.21, with five
degrees of freedom. This statistic is significant at the 2.5% level. This represents
a reasonable confidence level that our technique is doing significantly better than
chance overall, el ;

We also ran the learning algorithm for 850 iterations, after which there was no
appreciable decrease in the TSS error, signifying that the network had reached
a minimum in error space. The gradient descent algorithm: does not ensure a
global minimum. Nevertheless, muliiple runs from: different randomly selected
initial parameter values did converge to the same minimum, This would suggest
either a global minimum or a local minimum with 4 large basin of attraction. Simu-
lated annealing on the learning rate has been shown {0 ensure convergence 1o the
global minimum, Nevertheless, this technique is very costly in terms of computing
time. This documented the overfitting effect, since performance on the test sets was
uniformly better (in one case, the sameyin the case of 200 iterations of training
than in the case of 850. Also, performance on the training sets was yniformly worse
i the case of 200 iterations than in the case of 850, as would be expected given
the hypothesis of overfitting.

We also ran the TD(O) algorithm for the same training and test sets and for
the same. stocks. The results are shown in Table 8.3, The percentage of correct
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responses ranged from 47.52% for the DE raining set.to 60.08%: for the CCl
and XRX test sets. The average percentage of correct responses for the training
sets was 52.87% and the average percentage for the test sets was 56.59%. This
is a bit unusual in that performance on the test sets consistently exceeded that of
the training sets. Sutton claims that the TD{O) algorithm. is particularly adept at
generalisation,

There were only two estimated percentages of correct responses for the training
sets that are more than two standard deviations from the value maintained under
the null hypothesis, namely CCI and XRX. The standard deviations ranged from
~1.1125 for DE 1o 34475 for CCL

In the test sets, the estimated percentages of correct responses range from 0.5658
1o 3.206% standard deviations from the null of 0.30. The probability-of a-type I
error in the test set ranges from a high value of 28.77% for DE to 0.0007% for
CCT and XRX,

Viewed jointly, all six asset prices gave a chi-square statistic of 16.35, with
five degrees of freedom. This statistic was significant at the 1% levéle This is
comparable to the result achieved with backpropagation. However, 1 thig algorithm
actually learned to output a constant value for each of the stocks, under both training
and test sets (a different constant for each stock). Why it did this is still ‘a puzzle
to us, and a subject of further investigation.

We also attempted to use the cascade-correlation algorithm, but were lmdb!t, to
get it to converge for our data, We suspect that this is because the cascade-correlation
algorithm does not explore as wide a volume in the parameter space as the mhw
two algorithms, since it freezes the weights between input and hidden units,

DIRECTIONS FOR FURTHER WORK

In backpsopagation learning, or, for that matter, in any algorithm that searches
a parameter (or weight) space for an optimal set of parameters; the learning time
increases with the number of parameters. Moreover, as Weigend et al. [WeHuRu9 1}
and others have pointed out, Occam’s razor would lead us to prefer models with
fewer parameters, Several researchers have proposed methods for reducing the
number of parameters in backpropagation learning and variants thereof. In partic-
ular, Weigend er af have found that using one such method, which they call weight
elimination, can yield improved performance in forecasting tasks such as the one
that we have attempted in this chapter. They add to the error a term that is roughly
a normalised sum of the squares of the weights. Since we are minimising the error,
the backpropagation algorithm will attempt to send to zero some of the weights
at the expense of others, (o minimise the total sum of squares of the weights. We
have not yet tried this algorithm on our data sets, but it looks promising.

We plan to investigate the cascade-correlation algorithm further, possibly
extending it to a recurrent version. This algorithm has proven effective in other
empirical studies, and it is possible that we can adapt it for testing the EMH.
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We also plan to perform a factor and/or cluster analysis of each of the backprop-
agation networks that we have developed, to attempt to account for its performance
in terms that are theoretically understandable, instead of simply viewing the network
as a ‘black box’. It may instruct us as to which input data are most relevant to the
network:

cowcs_mzam

We estimated two models, a backpropagation model and a temporal difference
model, on six stock returns. With both models, we found some evidence against
the null hypothesis that the stock market is weakly efficient.

Two particularly important observations emerge from this study. Traditional tests
of the efficient market hypothesis have focused on linear models of asset prices,
[t is only recently, with the advent of nonlinear modelling techniques, that this
hypothesis has been put to a more stringent test. These new tests have provided
some contradictory evidence to the efficient market hypothesis. Secondly, neural
networks have been shown to be a rich class of nonlinear optimisation models.
Their relatively simple and intuitive architecture has been able to model fairly
complex dynamic behaviour.
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