Back Propagation as a Test of the Efficient Markets Hypothesis

George Tsibouris

Department of Economics
University of Wisconsin

Madison, WI 53706

Abstract

This paper presents some research on the applica-
tion of artificial neural networks to economic model-
ing. The Efficient Markets Hypothesis (EMH) states
that at any lime, the price of a security fully captures
all known information about that stock, so the price
behaves like a random walk in time, except when there
are changes in information. We test whether a non-
linear statistical method, error back propagation, can
do better than chance in forecasting stock trends.

An error back propagation model is estimated at dif-
ferent levels of time aggregation (daily and monthly)
on stock price and stock index returns. This paper
brings forth some new and encouraging results on the
ability of neural network models to predict the direc-
tion of stock price movements and to account for some
of the nonlinearities found in stock return data.

1 Introduction

Specification of financial models has traditionally
been done in partial equilibrium. Both capital asset
pricing models (CAPM) and arbitrage pricing theory
(APT) derived models attempt to describe asset price
behavior based on optimization in partial equilibrium.
Such models have been very useful in expanding our
understanding of stock price behavior. Nevertheless,
many empirical financial anomalies have remained un-
explainable. It is possible that this may be due to the
partial equilibrium nature of these models. Attempt-
ing to model financial markets in a general equilibrium
framework still remains analytically intractable.

Because of their inductive nature, neural networks,
like other statistical models, can bypass the step of
theory formulation altogether. They can infer com-
plex non-linear relationships between input and out-
put variables. There are three types of neural net-
works that suggest themselves for the modeling of

0073-1129-1/92 $3.00 © 1992 IEEE

523

Matthew Zeidenberg

Department of Computer Sciences
University of Wisconsin
Madison, WI 53706

time- series data: feedforward back propagation net-
works, recurrent back propagation networks, and net-
works based on the temporal difference method of Sut-
ton. We explore the use of feedforward back prop-
agation networks in the case of stock market time-
series data. Neural network models are fitted to daily
stock prices, daily and monthly stock market indices.
The estimated parameters are used to obtain one-step-
ahead forecasts.

Section 2 explains neural network models and in-
troduces the reader to some of the terminology that
is commonly used. Section 3 details the economet-
ric methodology. The estimation results are presented
and discussed in Section 4. A filter rule trading strat-
egy based on the back propagation algorithm is de-
vised in Section 5. This strategy is compared to
the buy-and-hold rule. Possible directions for further
study are outlined in Section 6. The last section, Sec-
tion 7, contains some concluding remarks.

2 Artificial Neural Networks

A neural network is a computational model that is a
directed graph composed of nodes (often referred to as
units or neurons) and connections between the nodes.
With each node is associated a number, referred to as
the node’s activation, or output. Similarly, a number
is also associated with each connection in the network,
called its weight. These are (very roughly) respec-
tively based on the firing rate of a biological neuron
and the strength of a synapse (connection between
two neurons). There are usually some neurons which
take their activations from the outside environment or
teacher; there may be, in addition, some nodes that
are distinguished as output nodes. In the field of neu-
ral networks, which is also called connectionism, the
terms node, neuron, and unit are used interchangably.

Each node’s activation is based on the activations of
the nodes that have connections directed at it, and the



weights on those connections. The rule that changes
activations in a network at each time step is called
the update rule. A neural network model is a parallel
model; typically, many activations could be updated
simultaneously, although this depends on the topology
of the network. Linear, sigmoidal, or Gaussian func-
tions of a dot product of the weights and activations of
the inputting units to a given unit are typically used
as an update rule for that unit.

There are two main reasons for interest in neu-
ral network models: first, such models have been no-
tably successful in modeling a variety of phenomena,
such as disease diagnosis [1], speech synthesis [2], and
pattern recognition of various types. Secondly, since
these models are somewhat brain-like, the hope is that
human-like cognitive capabilities may be achieved.

Learning in a neural network typically occurs by ad-
justment of the weights, via a learning rule. The net-
work is typically trained either to complete an input
pattern, to classify an input pattern, or to compute
a function of its input. The goal is typically to get
the output units to match some target pattern which
is the desired output of a corresponding input pat-
tern. At the beginning of learning, with the weights
all “wrong”, the network performs badly at its task; at
the end, with the weights adjusted, one hopes that it
will perform better. Typically the update and learning
rules do not change over the course of learning, only
the weights. After learning, the weights are usually
not changed further.

The data are typically partitioned into two sets, a
training set of input and target patterns, and a test
set. The training set is used for learning. After learn-
ing, performance is gauged on both the training and
test sets. Performance on the test set is what is most
critical, since this tests the inductive model’s validity
on other data, that is, its generalizability.

A neural network model is a statistical model. In
statistical terminology, the input patterns correspond
to the independent variable, the target patterns to the
dependent variable, and the weights to the parameters
of the model. The output patterns are the estimated
values of the dependent variable, using the model.

The neural network model in most common use is
the error back propagation model [3] [4] [5]. This type
of model has a layer of input units, a layer of output
units, and one or more layers of hidden units in be-
tween. Each layer is usually completely connected to
the layer above it, although in some variants of the
model, some of these connections are missing. Activa-
tion flows from input to hidden to output units. The
input at any unit is the dot product of the weights and

524

activations coming into it, flattened by a sigmoid.

At the output units, differences between the out-
puts and the targets, i.e. the errors, are com-
puted. These errors are then used to “back propa-
gate” hypothesized errors to the hidden units, using
the weights. The error at a hidden unit is the dot
product of the weights connecting it to the outputs
with the errors at the respective outputs At any given
time, the model is at a given point in its parameter
(weight) space. The goal is to minimize error to max-
imize the goodness-of-fit of the model. In order to do
this, gradient descent in weight space is performed.
This is done by changing each weight in proportion to
its partial derivative of the error. This is done repeat-
edly, cycling through the input/output pairs of the
training set, or choosing from them randomly, until
the error stabilizes at a minimum. After that, perfor-
mance on the network on patterns in the test set is
measured. This is the method used in this paper.

3 Econometric Methodology

The efficient markets hypothesis (EMH) has found
general acceptance in the financial community. In its
weak form, the EMH asserts that an asset price is a
reflection of all the information that can be gleaned
from past price patterns. This implies that the move-
ment of an asset’s price is completely unpredictable
given its history. Thus, technical analysis cannot pro-
vide a financially profitable investment strategy. The
intuitive reason behind the unpredictability of asset
price returns is similar to the reason why one rarely
finds money lying on the ground. Nobody disputes the
fact that money does indeed fall out of people’s pock-
ets but, when it does, it tends to be picked up fairly
quickly. Profit opportunities in the asset markets are
taken advantage of at their inception.

Traditional tests of the EMH have involved estimat-
ing a linear auto-regressive model of asset returns and
testing the joint null hypothesis that the coefficients of
the lagged returns equalled zero. Nevertheless, the in-
ability to refute the null hypothesis does not imply an
affirmation of the EMH. It simply may be that there
are nonlinear patterns that are linearly undetectable.

Neural networks are a rich class of functional forms
that are capable of approximating arbitrary Borel
measurable functions [6]. This property allows us
to exploit non parametric estimation methods based
upon these neural networks. These models can be
viewed as an input-output system of a particular form.
A neural network describes a mapping between a vec-
tor of inputs and a vector of outputs. The simplest



model is constructed in the following form: define a
1 x r vector of inputs X and a 1 x p vector of outputs
Y. Their interaction can be described as:

Y=X-p4

where 3 is the connection strength matrix of size r x p.
If we assume that one of the input neurons exhibits a
value of one at all times, we then have the multivariate
linear statistical model with an intercept term. Each
of the X inputs could be processed in parallel, as they
are in the brain.

The family of models described above is only ca-
pable of approximating quasi-linear models. Even
with a slightly more sophisticated underlying struc-
ture, say quadratic terms, it performs poorly. This
led to the development of more complex networks by
applying further analogies with neural function in the
cerebral cortex. Intermediate processing layers were
introduced between the input and output. These lay-
ers are called hidden since it is not possible to obtain
empirical observations on them. The output of this
network model can be described as follows:

q
Ye = ¢ Zaj(X‘rj)ﬂkj = fi (X,6),

i=1

where ' = (B1,...,Bp) and ¥’ = (71,...,7,) are the
connection strengths, ¢ and «; are known functions,
and ¢' = (6',7').

In back propagation, a member of the family of
smooth and monotonically increasing functions e.g.
the sigmoid squashing function

1

o (X%) = {5 o=%%

is used as the activation function a;. Without loss of
generality and for computational simplicity we define
the output processing function ¢ to be the identity
function.

Alternative choices of activation function are possi-
ble. One example that time-series econometricians are
familiar with is letting a; equal the sine function. We
therefore get the spectral analysis model where a linear
combination of sine functions at different frequencies
can approximate any function arbitrarily closely.

The back propagation method is implemented on 6
using recursive m — estimation, namely:

bey1 = 0: — 1: Vo fi (X, 0)1 Y - fi (X,9)

where 7 is the learning rate, Vg is the gradient and
6o is an arbitrary starting value.

525

4 Empirical Results

We selected two stock index data sets and six stock
price data sets. They are the New York Stock Ex-
change Transportation Index (TRANS), the Standard
and Poor’s Composite Index (SP), and the stock prices
of IBM, Procter and Gamble (PG), Coca-Cola (CC),
Boeing (B), Mobil (M), and 3M. We use two levels
of temporal aggregation: monthly for TRANS and
daily for all the rest. The observations for IBM, PG,
SP, CC, B, M, and 3M span the period from Jan-
uary 14, 1987 to December 29, 1989. The total num-
ber of daily observations is 750. The observations for
TRANS span the period from January 1966 to Au-
gust 1989. The total number of monthly observations
is 284. All our data is from the Center for Research in
Security Prices (CRSP), except for the TRANS data,
which came from the Citibase database.

We divided each data set into a two portions. The
first portion, which, following general practice, we
call the training set, is used to construct the network
model. The second portion is used to test the validity
of the model on data that was not used to produce the
model, that is, what is commonly referred as “gener-
alization” performance.

Table 1 presents summary statistics of the data. It
shows the division of each data set into two portions,
with dates, sample means and standard deviations for
the training and test sets in each of the four cases. The
variables in Table 1 are one day (month in the case of
TRANS) returns for holding the the stock or index in
question. The closing values are used to represent the
daily price.

The average daily return of the six stocks, IBM,
PG, B, CC, 3M, and M for the training period is
0.0002% and for the test period is 0.0007%. The most
volatile stock during the training period was CC with a
standard deviation of 0.0242. The most volatile stock
during the test period was PG with a standard devia-
tion 0.0343.

Using the TRANS data set as a benchmark, we im-
plemented the back propagation algorithm using the
signs of stock returns as inputs and outputs.! For
each of the six data sets IBM, PG, SP, CC, B, M,
and 3M we used a network of 9 input units, 5 hidden
units, and one output unit. This represents a model
of (9%5)+ (5% 1) = 50 weights, or parameters. Back
propagation is much more parsimonious in number of
parameters than the equivalent linear polynomial ex-
pansion with 2% — 1 parameters.

1 An alternative specification, using signed magnitudes as in-
puts and signs and magnitudes as two separate outputs was
attempted. It did not perform very well.



| Variable | Sample | Start date | End date | Mean | Std. Dev. |

B Train | 1/14/87 | 1/4/89 | 0.0005 | 0.0181
Test 1/5/89 | 12/29/89 | 0.0003 | 0.0256
CC Train | 1/14/87 | 1/4/89 | 0.0006 | 0.0242
Test 1/5/89 | 12/29/89 | 0.0022 | 0.0151
IBM | Train | 1/14/87 | 1/4/89 | 0.0003 | 0.0191
Test 1/5/89 | 12/29/89 | -0.0010 | 0.0108
3M Train | 1/14/87 | 1/4/89 | -0.0007 | 0.0313
Test 1/5/89 | 12/29/89 | 0.0011 | 0.0099
M Train | 1/14/87 | 1/4/89 | 0.0003 | 0.0229
Test 1/5/89 | 12/29/89 | 0.0013 | 0.0127
PG Train | 1/14/87 | 1/4/89 | 0.0004 | 0.0230
Test 1/5/89 | 12/29/89 | 0.0001 | 0.0343
SP Train | 1/14/87 | 1/4/89 | 0.0003 | 0.0162
Test 1/5/89 | 12/29/89 | 0.0010 | 0.0082
TRANS | Train 1/66 7/82 | 0.0023 | 0.0555
Test, 8/82 8/89 | 0.0154 | 0.0482

Table 1: Summary Statistics

526



We used the same technique for IBM, PG, SP, CC,
B, M and 3M, so let us use IBM as an illustrative ex-
ample. To predict the value of IBM at period (day) ¢
(corresponding to the output unit), we used the signs
of the returns for the past 5 periodst — 1,...,¢ — 5, as
well as the return between ¢ and: ¢ — 10 (two weeks),
t — 22 (one month), ¢ — 132 (six months), and ¢ — 264
(one year), for a total of 9 inputs. Positive asset re-
turns are coded as a 1 while negative asset returns
are coded as a 0. We have not yet experimented with
varying the number of hidden units. General experi-
ence has led researchers to choose a number of hidden
units less than or equal to than the number of inputs
(e-g. [2], [1).

In the case of TRANS, which is a monthly data
series, we again used as inputs the signs of the returns
for the past 5 periods (in this case months), as well as
the change in price between ¢ and: £ — 10 and ¢ — 20,
for a total of seven input variables.

We performed back propagation learning on the
training set for 200 iterations or epochs, where an iter-
ation represents one complete pass through the input
data, altering the weights in the network. We recorded
the total sum-squared error (TSS) of all the training
patterns. We considered, as is general practice, for
the output unit to be predicting a positive sign for
the subsequent return if it (a sigmoid unit) outputed
above 0.5, and negative below 0.5. The performance is
the percentage of the time that the predicted output
agrees with the true output. We also calculated the
RMS error, the number correctly predicted, and the
average output of the network for each set. Table 2
presents the results of the neural network estimations
on the financial data series. The TSS error and the
RMSE are reported for all the asset price measures
for both the training set and the test set. The average
direction of asset price change, which corresponds to
the average value of the output, is also presented. For
the daily asset prices, the average output in the train-
ing set equals 0.4804 and in the test set equals 0.4922.
This means that the neural network model predicts an
upward movement approximately 48.04% of the time
and a downward movement the remainder of the time
(in the training set.) This is consistent with one of
the implications of the “random-walk” hypothesis in
which upward asset price movements should occur just
about as frequently as downward movements.

The lower portion of Table 2 presents the actual
performance statistics of the back propagation algo-
rithm in and out of sample. The number of correct
signs of the asset price returns coming from the model
is compared to the actual data series. The percentage

527

of correct signs is calculated for both the training and
test runs. Standard deviations are also calculated for
the percentage of correct signs under the null hypoth-
esis of the model actually having a 0.5 probability of
estimating the direction of change correctly. The prob-
ability of a Type I error, namely the probability that
we would get the percentage of correct signs that we
report given that the model was providing absolutely
no explanatory power, is also presented.

The percentage of correct responses ranges from
51.6% for the B test set to 67.9% for the TRANS test
set. The average percentage of correct responses for
the training sets is 64.15% and the average percent-
age for the test sets was 56.13%. As is usually the
case in many such experiments of this type, the per-
formance on the training set (after training) usually
exceeds that on the test set. This is because the train-
ing process tends to fit characteristics of the training
set that are not generalizable (so called “overfitting”),
that is, it fits “noise” in the training set as well as sig-
nal. Therefore, it is not desirable to train the training
set beyond a certain number of iterations, since in the
early stages of learning it learns the first-order char-
acteristics of the training data, which are more likely
to correspond to the true model. In subsequent iter-
ations, the model learns second-order characteristics
which vary from data set to data set and would prove
to be of no help in attempts to generalize.

The estimated percentages of correct responses for
the training sets are all more than two standard de-
viations from the value maintained under the null hy-
pothesis. The standard deviations range from 2.59 for
SP to 8.05 for B. These values correspond to very low
probabilities of Type I errors in the training set with
the highest value for all stock measures being 0.49%.

In the test sets, the estimated percentages of cor-
rect responses range from 0.5060 to 3.6682 standard
deviations from the null of 0.50. Both indices, SP
(aggregated daily) and TRANS (aggregated monthly)
have correct percentages of §7.2% and 67.9% respec-
tively. Their corresponding standard deviations are
2.28 and 3.27 and the Type I probabilities are 1.13%
and 0.05%. M gives a correct percentage of 61.6%,
and its standard deviation and type I probability are
3.67 and 0.01%.

These results provide strong evidence that back
propagation models are able, using previous asset re-
turns, to provide some predictive power for future re-
turns. This result is evidence against the weak form
of the EMH. With respect to IBM, PG, B, CC, 3M,
the test sets did not provide evidence of prediction
abilities. This result is in accordance with the result



of White [7] who was unsuccessful in forecasting IBM
daily stock prices using neural networks.

Viewed jointly, all eight asset prices give a chi-
square statistic of 115.84, with eight degrees of free-
dom. This statistic is significant at the 5% level. This
represents a reasonable confidence level that our tech-
nique is doing significantly better than chance overall.

Figure 1 shows the performance of the back prop-
agation model in the case of the TRANS stock in-
dex. The estimated outputs of the back propagation
model are plotted in conjunction with the TRANS
data, called the target in this instance. In January
1966, both data series are set to zero. For subsequent
months, positive returns are recorded as +1 and neg-
ative returns are recorded as —1. These values are cu-
mulated over the full training and test set. The Y-axis
is drawn at the point where the training set ends and
the test set begins. In the case of the target, you can
think of the plot as representing the original TRANS
data series where the magnitudes of all monthly re-
turns are scaled to +1 or —1 depending on their sign.
It is interesting to note how closely the output coin-
cides with the target in the test set. Note that what
matters in this figure is the degree in which the two
curves follow the same trends, rather than how close
they are to one another.

We also ran the learning algorithm for 850 itera-
tions, after which there was no appreciable decrease in
the TSS error, signifying that the network had reached
a minimum in error space.? This documented the
overfitting effect, since performance on the test sets
was uniformly better (in one case, the same) in the
case of 200 iterations of training than in the case of
850. Also, performance on the training sets was uni-
formly worse in the case of 200 iterations than in the
case of 850, as would be expected given the hypothesis
of overfitting.

5 Trading Simulation

In this section, we develop and implement a trad-
ing rule strategy based on the back propagation al-
gorithm. First, we consider a buy-and-hold strategy
where funds are invested at the beginning of the test

2The gradient descent algorithm does not ensure a global
minimum. Nevertheless, multiple runs from different randomly
selected initial parameter values did converge to the same min-
imum. This would suggest either a global minimum or a local
minimum with a large basin of attraction. Simulated annealing
on the learning rate has been shown to ensure convergence to
the global minimum [8]. Nevertheless, this technique is very
costly in terms of computing time.

528

period in a particular stock and this long position is
cashed out at the end of the test period. The alter-
native strategy is driven by the output of the back
propagation algorithm. A positive prediction of an
asset’s daily return corresponds to going “in” the as-
set while a negative prediction is translated as a move
“out” of the asset and into a risk-free asset such as a
U.S. Treasury bill. The relative performance of these
two strategies will be measured in terms of average
daily excess rate of return. These kinds of filter rules
are similar to those found in [9], [10].

The average rate of return for the buy-and-hold
strategy is expressed as

_ 1 &
Rpy = N;Rjt

where Rj; is the return of asset j in time period t.
The filter rule determined by the back propagation
algorithm earns the return of the stock for the days
“in” asset j and the risk-free rate of return for days
“out” of asset j. The average rate of return for the
filter rule strategy is

RF=(1—f)Ni.ZR,-t+fN1 Y i

in tel ut te0

where f equals the proportion of days out of the asset
relative to the total number of trading days, N;,, I,
N,ut and O denote the number and the set of trading
days in and out of the asset respectively, and 7; is the
risk-free rate of return. The arithmetic rate of return
is used at the expense of the geometric one for the
sake of clarity of exposition.

Some consideration must be given to transaction
costs. These vary sharply according to the type of
agent executing the transaction. Floor traders incur
a clearing house fee which is approximately $3 per
transaction. Sweeney [10] estimates this transaction
cost to translate to 1/20 of 1 percent for an average
stock trade. This estimate is also corroborated by
Fama and Blume [9]. Money managers and private
agents face higher costs than floor traders. Sweeney
conservatively estimates their transaction costs to be
1/5 and 2/5 of 1 percent respectively. We use the
money managers’ transaction cost of 1/5 of 1 percent
in this paper.

Table 3 presents the results of simulated trading us-
ing the back propagation filter rule for the six stocks
sampled at a daily frequency. These results are com-
pared to a buy-and-hold strategy. An amount of $100
is invested using each one of the strategies on the first
day of the test sample, January 5 1989. On the last



Figure 1: TRANS Output Performance

40 7

Month

529



[ Variable | Set | Sample Size | TSS | RMSE | Avg. est. |

B Train 500 96.780 | 0.4400 | 0.4553
Test 250 77.315 | 0.5561 | 0.5046

CcC Train 500 106.373 | 0.4612 | 0.4519
Test 250 77.085 | 0.5553 | 0.4546

IBM Train 500 111.065 | 0.4713 | 0.4908
Test 250 70.759 | 0.5320 | 0.4971

M Train 500 108.348 | 0.4655 | 0.4862
Test 250 74.724 | 0.5467 | 0.4840

M Train 500 104.277 | 0.4567 | 0.4540
Test 250 57.0159 | 0.4776 | 0.4840

PG Train 500 109.555 | 0.4681 | 0.4755
Test 250 71.301 | 0.5340 | 0.4973

SP Train 500 116.163 | 0.4820 | 0.5488
Test 250 66.3106 | 0.5150 | 0.5239

TRANS | Train 200 40.174 | 0.4482 | 0.5180
Test 84 19.832 | 0.4859 | 0.5149

l Variablel Set | Nr. correct I % correct l Std. Dev. | Prob. 1

B Train 340 68.0% 8.0498 0
Test 129 51.6% 0.5060 0.3085

CC Train 336 67.2% 7.6921 0
Test 132 52.8% 0.8854 0.1894

IBM Train 306 61.2% 5.0088 0
Test 133 53.2% 1.0119 0.156

3M Train 322 64.4% 6.4399 0
Test 131 52.4% 0.7589 0.2266

M Train 331 66.2% 7.2448 0
Test 154 61.6% 3.66824 | 0.0001

PG Train 322 64.4% 6.43988 0
Test 131 52.4% 0.7590 0.224
SP Train 279 55.8% 2.5938 0.0049
Test 143 57.2% 2.2768 0.0113

TRANS [ Train 132 66.0% 4.5255 0
Test 57 67.9% 3.2733 0.0005

Table 2: Empirical Results

| Variable | Filter rule | Buy-and-Hold |

B $97.72 $97.74
CC $105.40 $171.67
1IBM $73.84 $77.16
M $90.97 $130.53
M $98.35 $136.14
PG $101.76 $81.45

Table 3: Trading Profits

530



day of the test period, December 29 1989, both posi-
tions are cashed out and the dollar amounts are pre-
sented in Table 3.

These results do not provide conclusive evidence
of the profitability of the back propagation filter over
the buy-and-hold strategy. In four cases, the buy-and-
hold strategy is superior to the filter rule. For IBM,
buy-and-hold is 4.5% more profitable than back prop-
agation. In the case of Coca Cola, the buy-and-hold
strategy performs 63% better. For Boeing, the two
strategies perform equally well. In only one case, that
of Procter and Gamble, does the filter rule outperform
the buy-and-hold strategy. In percentage terms, the
back propagation filter is 25.0% more profitable.

6 Directions for further work

In back propagation learning, or for that matter, in
any algorithm that searches a parameter (or weight)
space for an optimal set of parameters, the learning
time increases with the number of parameters. More-
over, as Weigend et al. [11] and others have pointed
out, Occam’s razor would lead us to prefer models
with fewer parameters. Several researchers have pro-
posed methods for reducing the number of parame-
ters in back propagation learning and variants thereof.
In particular, Weigend has found that using one such
method, which he calls weight-elimination, can yield
improved performance in forecasting tasks such as the
one that we have attempted in this paper. Weigend
adds to the error a term that is roughly a normalized
sum of the squares of the weights. Since we are mini-
mizing the error, the back propagation algorithm will
attempt to send to zero some of the weights at the ex-
pense of others, to minimize the total sum of squares
of the weights. We have not yet tried this algorithm
on our data sets, but it looks promising.

Some of the following algorithms may also be useful.
Fahlman and Lebiere [12] have proposed the Cascade-
Correlation Learning Architecture as an alternative
to standard back propagation. This algorithm adds
new hidden units one at a time, each additional unit
fitting some additional portion of the variance in the
output signal. It is a cascaded model since each new
unit introduced receives output from previous hidden
units that have been added. Since this algorithm adds
hidden units as needed until some error criterion is
met, it also has the effect of minimizing the number of
parameters in the model, given that the model must fit
to some given level of accuracy. Ash [13] and Honavar
and Uhr [14] have also proposed algorithms of this
type; Ash’s algorithm adds hidden units one at a time

at the same level in the network, and Honavar and
Uhr generate units which compute various functions
of their input, which are added to the network if they
reduce the error. We intend to test one or more of
these algorithms on our data set and on subsequent
data sets that we study.

Another algorithm has been developed explicitly
for forecasting applications, the Temporal Difference
Method of Sutton [15]. This model is based on the
idea of computing an error between successive predic-
tions rather than between output and target. Sutton
finds that this method converges faster than ordinary
back propagation, and we may apply it to our data
sets.

We also plan on performing a factor and/or clus-
ter analysis of each of the back propagation networks
that we have developed, to attempt to account for
its performance in terms that are theoretically under-
standable, instead of simply viewing the network as a
black box. It may instruct us as to which input data
are most relevant to the network.

7 Conclusion

We estimated a back propagation model on two
stock price and two stock index returns. In the case
of the stock indices, we found some evidence against
the efficient market hypothesis both at the daily and
monthly levels of aggregation. The evidence for the
profitability of the back propagation filter rule was in-
conclusive when compared to the buy-and-hold strat-
egy.

Traditional tests of the efficient market hypothesis
have focused on linear models of asset prices. It is only
recently, with the advent of non-linear modelling tech-
niques, that this hypothesis has been put to a more
stringent test. These new tests have provided some
contradictory evidence to the efficient market hypoth-
esis.

8 Acknowledgments

We would like to thank Duncan Chaplin for helpful
discussions and assistance. This paper is a revised
and updated version of a paper presented at an earlier
conference [16].

References

[1] K. Saito and R. Nakano, “Medical diagnostic ex-



2]

3

-

[4]

(5]

(6]

(9]

[10]

(11]

[12]

pert system based on pdp model,” in Proceedings
of the IEEE International Conference on Neural
Networks, (San Diego, CA), IEEE, 1988.

T. J. Sejnowski and C. Rosenberg, “Parallel net-
works that learn to pronounce english text,”
Complez Systems, vol. 1, pp. 145-168, 1987.

Rumelhart, D.E., G. E. Hinton, and Williams,
R. J., “Learning internal representations by er-
ror propagation,” in Parallel Distributed Process-
ing: ezplorations in the microstructure of cog-
nition (D. Rumelhart and J. McClelland, eds.),
Cambridge, MA: MIT Press, 1986.

P. Werbos, Beyond Regression: New Tools for
Prediction and Analysis in the Behavioral Sci-
ences. PhD thesis, Harvard University, 1974.

D. B. Parker, “Learning logic,” Tech. Rep. 581-
64, Office of Technology Licensing, Stanford Uni-
versity, 1982.

K. Hornik, M. Stinchcombe, and H. White, “Mul-
tilayer feedforward networks are universal ap-
proximators,” Neural Networks, vol. 2, pp. 359
366, 1989.

H. White, “Economic prediction using neural net-
works: The case of ibm daily stock returns.” Uni-
versity of California-San Diego, 1988.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,
“Optimization by simulated annealing,” Science,
vol. 220, pp. 671-680, 1983.

E. F. Fama and M. E. Blume, “Filter rules
and stock market trading,” Journal of Business,
vol. 39, pp. 226-241, 1966.

R. Sweeney, “Some new filter rules: Methods and
results,” Journal of Financial and Quantitative
Analysis, vol. 23, pp. 285-300, 1988.

A. S. Weigend, D. E. Rumelhart, and B. A. Hu-
berman, “Generalization by weight-elimination
with application to forecasting,” in Advances in
Neural Information Processing (J. M. R. P. Lipp-
mann and D. S. Touretzky, eds.), vol. 3, San Ma-
teo CA: Morgan Kaufmann, 1986.

S. E. Fahlman and C. Lebiere, “The cascade
correlation learning architecture,” Tech. Rep.
CMU-CS-90-100, School of Computer Science,
Carnegie-Mellon University, 1990.

532

(13]

[14]

(15]

(16]

T. Ash, “Dynamic node creation in connectionist
networks,” Tech. Rep. 8901, Cognitive Science In-
stitute, University of California, San Diego, 1989.

V. Honavar and L. Uhr, “A network of neuron-
like units that learns to perceive by generation
as well as reweighting of its links,” in Proceed-
ings of the 1988 Connectionist Models Summer
School (G. Hinton, T. Sejnowski, and D. Touret-
zky, eds.), (San Mateo, CA), Morgan Kaufmann,
1988.

R. S. Sutton, “Learning to predict by the meth-
ods of temporal differences,” Machine Learning,
vol. 3, pp. 944, 1988.

G. Tsibouris and M. Zeidenberg, “Predicting
stock market fluctuations using neural network
models.” Presented at the Annual Meeting of
the Society for Economic Dynamics and Control,
Capri, Italy, 1991.



